首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The putative role of lysophospholipids in activation and regulation of the volume-sensitive taurine efflux was investigated in HeLa cells using tracer technique. Lysophosphatidylcholine (LPC, 10 μm) with oleic acid increased taurine efflux during hypotonic and isotonic conditions. Substituting palmitic or stearic acid for oleic acid enhanced taurine release during isotonic conditions, whereas ethanolamine, serine or inositol containing lysophospholipids were ineffective. High concentrations of LPC (25 μm) induced Ca2+ influx, loss of adenosine nucleotides, taurine and the Ca2+-sensitive probe Fura-2, and thus reflected a general breakdown of the membrane permeability barrier. Low concentrations of LPC (5–10 μm) solely induced taurine efflux. The LPC-induced taurine release was unaffected by anion channel blockers (DIDS, MK196) and the 5-lipoxygenase inhibitor ETH 615-139, which all blocked the volume sensitive taurine efflux. Furthermore, LPC-induced taurine release was reduced by antioxidants (NDGA, vitamin E) and the protein tyrosine kinase inhibitor genistein. The swelling-induced taurine efflux was in the absence of LPC unaffected by vitamin E, blocked by genistein, and increased by H2O2 and the protein tyrosine phosphatase inhibitor vanadate. It is suggested that low concentrations of LPC permeabilizes the plasma membrane in a Ca2+-independent process that involves generation of reactive oxygen species and tyrosine phosphorylation, and that LPC is not a second messenger in activation of the volume sensitive taurine efflux in HeLa cells. Received: 17 December 1999/Revised: 13 April 2000  相似文献   

2.
The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation of the release pathway. The accelerated inactivation is not observed in hypotonic Ca2+-free or high-K+ media. Addition of Ca2+-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca2+-activated K+ channels. The taurine release from control cells and cells exposed to Ca2+ agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca2+-augmented taurine release. Exposure to Ca2+-mobilizing agonists prior to a hypotonic challenge also augments a subsequent swelling-induced taurine release even though the intracellular Ca2+-concentration has returned to the unstimulated level. The Ca2+-induced augmentation of the swelling-induced taurine release is abolished by inhibition of calmodulin, but unaffected by inhibition of calmodulin-dependent kinase II, myosin light chain kinase and calcineurin. The effect of Ca2+-mobilizing agonists is mimicked by protein kinase C (PKC) activation and abolished in the presence of the PKC inhibitor Gö6850 and following downregulation of phorbol ester-sensitive PKC isoforms. It is suggested that Ca2+ regulates the volume-sensitive taurine-release pathway through activation of calmodulin and PKC isoforms belonging to the novel subclass (nPKC).This revised version was published online in June 2005 with a corrected cover date.  相似文献   

3.
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.  相似文献   

4.
Effect of exogenous ATP on the volume of TA3 ascites tumor cells   总被引:1,自引:0,他引:1  
When exogenous ATP is added to suspensions of TA3 ascites tumor cells suspended in Ca++ and Mg++ free media, a significant increase in cell volume can be measured. This increase is reversible upon addition of Ca++ and/or Mg++ back to the media. The enlargement of these cells is temperature sensitive and specific for ATP; no other nucleotides, EDTA or ouabain were effective. The evidence suggest that this phenomena may be due to an alteration in membrane permeability and that the regulation of membrane permeability is an energy dependent process.  相似文献   

5.
An increase in cytoplasmic free [Ca2+], [Ca2+]i, has been suggested as the trigger for the permeability changes that bring about cell volume restoration following exposure to anisotonic media. This idea was directly tested in human peripheral lymphocytes undergoing regulatory volume decrease following a hypotonic dilution of the suspension. [Ca2+]i was measured with the intracellularly trapped fluorescent indicator, quin2, and showed no measurable change on hypotonic swelling or during the subsequent volume decrease. Moreover, even though the incorporated quin2 adds significant Ca-buffering to the cytoplasm, regulatory volume decrease occurred normally in the quin2-loaded cells. It appears that alterations in [Ca2+]i are not involved in these processes of volume regulation. An intracellularly trapped derivative of fluorescein, bis(carboxyethyl)carboxyfluorescein, was used to monitor cytoplasmic pH, which also showed no change during regulatory volume decrease.  相似文献   

6.
The characteristics of rat liver mitochondria swelling induced by diamide, an oxidizing agent for thiol groups, and by Ca ions are very similar. In both cases the swelling, which is initiated by addition of 0.5–1 mM phosphate or acetate, is prevented by FCCP, antimycin A, EGTA, Mg++ and ruthenium red. Diamide potentiates the swelling action of Ca++, while DTE potentiates that of Mg++. The additive effects of calcium and diamide on rat liver mitochondria have been correlated with their synergic action in promoting the release of mitochondrial Mg++. The results strongly indicate that some of the effects of diamide are mediated by a mobilization of endogenous divalent ions and that the antagonism between Ca++ and Mg++ is closely correlated with the redox state of membrane bound thiol groups.  相似文献   

7.
Instrumentation has been developed for the rapid electronic sizing of large numbers of myofibrils. The response of myofibrils in the presence of ATP to changes in Ca++ concentration was examined. Shortening of myofibrils upon addition of Ca++ was accompanied by an increased protein effective volume of approximately 10-40%. Whereas ATPase activation and increased turbidity of myofibrils upon addition of Ca++ were reversible upon subsequent addition of EGTA, the shortening and swelling were irreversible. It is proposed that the swelling may result from the breaking of hydrophobic bonds within myosin. The ATPase activity and turbidity are measures of the input, while the shortening and swelling are measures of the output of a coupled nonequilibrium process; failure of reversal of the output indicates an uncoupling under the experimental conditions.  相似文献   

8.
In response to osmotic cell swelling, Intestine 407 cells react with a rapid and transient activation of phospholipase D (PLD). To investigate the role of PLD during the regulatory volume decrease, cells were treated with 1-butanol resulting in a depletion of PLD substrates. Activation of volume-regulated anion channels, but not the cell swelling-induced release of taurine, was largely inhibited in the presence of low concentrations of 1-butanol. In addition, hypotonicity-induced exocytosis, ATP release and subsequent endocytosis were found to be largely abrogated. The results support a model of cell volume regulation in which PLD plays an essential role in the cell swelling-induced vesicle cycling and in the activation of volume-sensitive anion channels.  相似文献   

9.
R Simantov 《Life sciences》1978,23(25):2503-2508
Mouse pituitary tumor cells grown in tissue culture release endorphins spontaneously to the culture medium. Depolarization of these cells by incubation with high K+ concentration (56 mM) increased 2–3 folds the release of endorphins. The K+ evoked release was Ca++ dependent by that: a, removal of Ca++ ions inhibited 90% of K+ stimulated release. b, ethyleneglycol-bis (β-aminoethyl ether) N,N′-tetraacetic acid (EGTA) inhibited release of endorphins in the presence of high K+ and Ca++. It is suggested that dual regulatory system inhibit and/or stimulate in-vivo release of endorphins from the pituitary glands.  相似文献   

10.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad‐selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N‐hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite‐encoded proteins trafficked to the host membrane. A high‐throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium‐infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.  相似文献   

12.
Contraction of the heart is regulated by a number of mechanisms, such as neurotransmitters, hormones, autacoids, pH, intracellular ATP, and Ca++ ions. These actions are mediated, at least in part, by actions on the sarcolemmal slow (L-type) Ca++ channels, exerted directly or indirectly. The major mechanisms for the regulation of the slow Ca++ channels of myocardial cells includes the following. cAMP/PK-A phosphorylation stimulates the slow Ca` channel activity, whereas cGMP/PK-G phosphorylation inhibits. DAG/PK-C phosphorylation and tyrosine kinase phosphorylation are suggested to stimulate the slow Ca++ channel activity. Intracellular application of Gs protein increases the slow Ca++ currents (ICa(L)). Lowering of intracellular ATP inhibits ICa(L). Acidosis and increase in [Ca]i inhibits ICa(L). A number of changes in the Ca++ channels also occur during development and aging. Thus, it appears that the slow Ca++ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors, and thereby control can be exercised over the force of contraction of the heart.  相似文献   

13.
Aurintricarboxylic acid is shown to cause nuclear swelling, disaggregation of chromatin structure and release of histones from chromatin. The nuclear swelling is inhibited by Ca++ and Mg++. The potential usefulness of aurintricarboxylic acid as a probe in chromatin studies is suggested.  相似文献   

14.
Effects of taurine on Ca++ binding to microsomes isolated from rat cerebral cortex were investigated in a medium containing various concentrations of KCl and/or NaCl. Calcium binding to microsomes was inhibited in a dose-dependent fashion by taurine in the incubation medium containing 5 mM KCl and 115 mM NaCl, while there was no inhibition in the medium containing 115 mM KCl and 5 mM NaCl. Taurine also decreased Ca++ binding in the medium containing 70 mM KCl without NaCl. A similar tendency toward inhibition of the Ca++ binding was observed in the medium with 5 mM or 120 mM KCl without NaCl. Taurine did not influence the Ca++ binding in the medium containing different concentrations of NaCl without KCl, or in the medium from which KCl and NaCl were omitted. Isethionate, glycine, γ-aminobutyric acid, β-alanine and L-leucine did not significantly alter the Ca++ binding to microsomes in the medium containing 70 mM KCl without NaCl. Thus it would appear that taurine may modulate the binding of calcium to microsomes in conditions which resemble the state of depolarization, while it is inactive in the normal resting state. This effect is apparently specific to taurine amongst a series of putative “inhibitory” amino acids.  相似文献   

15.
We employed the calcium (Ca++)-sensitive, intracellular dye QUIN-2 to examine the role of cytosolic Ca++ in the stimulation of PTH release by high extracellular potassium (K+) concentrations. Addition of 55 mM KCl to cells incubated with 115 mM NaCl and 5 mM KCl lowered cytosolic Ca++ at either low (0.5 mM) extracellular Ca++ (from 194±14 to 159±9 nM, p<.01, N=6) or high (1.5 mM) extracellular calcium (from 465±38 to 293±20 nM, p<.01, N=10). This reduction in cytosolic Ca++ was due to high K+perse and not to changes in tonicity since addition of 55 mM NaCl was without effect while a similar decrease in cytosolic Ca++ occurred when cells were resuspended in 60 mM NaCl and 60 mM KCl. PTH release was significantly (p<.01) greater at 0.5 and 1.5 mM Ca++ in QUIN-2-loaded cells incubated with 60 mM NaCl and 60 mM KCl than in those exposed to 115 mM NaCl and 5 mM KCl. In contrast to most secretory cells, therefore, stimulation of PTH release by high K+ is associated with a decrease rather than an increase in cytosolic Ca++.  相似文献   

16.
Summary The histo- and cytochemical localization of Ca++-ATPase activity in the adenohypophysis of the guinea pig was studied utilizing a newly developed method (Ando et al. 1981). An intense reaction was observed in the wall of the blood vessels and between non-secretory cells (stellate cells) and endocrine cells of the pars distalis. Under the electron microscope the Ca++-ATPase reaction product was located extracellularly in relation to the plasmalemma of the stellate cells. This reaction was dependent on Ca++ and the substrate, ATP, and reduced by the addition of 0,1 mM quercetin to the standard incubation medium. Preheating of the sections before incubation completely inhibited the enzyme activity. When Mg++ in different concentrations were substituted for Ca++ in the incubation medium the reaction was always reduced. Both Ca++ and Mg++ in the incubation medium also reduced the reaction. The plasmalemma of the endocrine cells contains no demonstrable amount of Ca++-ATPase activity. The function of the Ca++-ATPase activity is discussed in relation to the regulation of the extracellular Ca++ concentration which seems to be important with respect not only to the secretory process of the endocrine cells but also to the metabolism of the adenohypophysis.  相似文献   

17.
Subcellular localization of 45Ca++ in brain was determined after intracerebroventricular injection of the isotope in mice. Acute morphine injection selectively depleted 45Ca++ from synaptic vesicles while chronic morphine treatment increased the 45Ca++ in vesicular fractions. The elevated vesicular 45Ca++ found in tolerant-dependent animals rapidly declined during naloxone precipitated abstinence. These effects of morphine on brain Ca++ localization are discussed in terms of their possible relationship to neurotransmitter release and tolerance and dependence development.  相似文献   

18.
Human lung fibroblasts (W138) can be brought to a quiescent state by removal of serum from the medium or by lowering of the extracellular Ca++. Upon return of Ca++ or serum, the cells enter the G1 phase and progress to S within 15–18 hours. Since multiple G1 phase blocks have been demonstrated, we wished to determine whether the Ca++ and serum block were equivalent since previous data suggested that these two medium components may act at a common point in the initiation of proliferation. We have evaluated the membrane transport of 86Rb, 3-O-methylglucose, AIB, and cycloleucine following stimulation of quiescent cells by Ca++ or serum. Serum stimulation results in large increases in the influx of all the substances tested. These increases are prevented if Ca++ is absent upon serum stimulation or they are rapidly diminished following Ca++ removal. In contrast, Ca++ stimulation of Ca++-deprived cells causes little or no enhancement of any of the transport systems, yet the cells progress to S phase in a manner similar to serum-stimulated cells. These results indicate that the Ca++ and serum G0 or G1 block are not equivalent and that the serum-induced change in transport of these components does not appear necessary for successful G1 phase progression. Furthermore, the data suggest that the sequence in which Ca++ or serum are presented to the cells alters the ability of Ca++ to modulate the transport systems. Quiescent cells which are exposed to Ca++ prior to serum possess a Ca++ modulation of several transport systems. Cells which are exposed to Ca++ subsequent to serum do not appear to possess this Ca++ regulation.  相似文献   

19.
A decrease in external osmolarity results in cell swelling and the immediate activation of a mechanism to restore cell volume, known as regulatory volume decrease (RVD). When exposed to a gradual osmolarity decrease (GODE), some cells do not swell. This reflects the operation of an active regulatory process known as isovolumetric regulation (IVR). The mechanisms underlying IVR appear similar to those activated during RVD, namely the extrusion of K+, Cl-, amino acids, and other organic molecules. A previous study has documented IVR in cerebellar granule neurons, parallel to an early efflux of taurine and Cl-, whereas K+ efflux is delayed. In this work we briefly review the importance of amino acids in the mechanisms of cell volume control in the brain, with emphasis on IVR. We also present experiments showing the response to GODE in cerebellar astrocytes. The currents activated during GODE, recorded in the whole-cell configuration of the patch clamp technique, indicate the early activation of an anion current, followed by a more delayed cation current. A correlation between the time course of amino acid efflux during GODE and the occurrence or not of IVR in various cell types, suggest the importance of these osmolytes in the volume regulatory process in this model.  相似文献   

20.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号