首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the relation between expression of the putative myofibroblast marker α-smooth muscle actin and the remodelling of extracellular matrix, immunocytochemical, gel electrophoresis, and collagen gel contraction studies were performed on two human fibroblast subtypes. Double immunolabelling for total actins and α-smooth muscle (sm) actin as well as affinity labelling of filamentous and monomeric actins in gingival fibroblasts demonstrated that α-sm was colocalized in stress fibres and in regions with high levels of monomeric actin throughout the cytoplasm. α-sm comprised up to 14% of total cellular actin as assessed by 2D gel electrophoresis. Thirteen different gingival and seven different periodontal ligament fibroblast lines constitutively expressed on α-sm actin. These cells exhibited up to 60% inter-line variations of fluorescence due to α-sm actin and up to 70% and 45% inter-line variation in the rate of collagen gel contraction. Quantitative, single cell fluorimetry of α-sm actin immunoreactivity demonstrated a linear relation between gel contraction and α-sm actin (correlation coefficients of 0.71 for gingival and 0.61 for periodontal ligament cells), but there was no detectable relationship between total actin content and gel contraction. In contrast, flow cytometry demonstrated that 99% of the total gated cells from cell lines exhibiting rapid gel contraction showed α-sm actin staining above background fluorescence as compared to only 35% of cells with slow rates of gel contraction. Contracting collagen gels stained with FITC-phalloidin showed cells with well-developed stress fibres that were progressively more compact and elongated during the time of maximal gel contraction. To examine the dependence of gel contraction on assembly of monomeric actin into actin filaments, cells were electroporated in the presence of phalloidin or cytochalasin D. Collagen gels exhibited up to 100% inhibition of gel contraction that was dose-dependent. Gel contraction was inhibited 93% by electroinjection of cells with α-sm actin antibody prior to incubation, but the antibody did not inhibit actin assembly after attachment and spreading on substrates. These data indicate that gel contraction is dependent on α-sm actin expression and that α-sm actin is a functional marker for a fibroblast subtype that rapidly remodels the extracellular matrix. © 1994 wiley-Liss, Inc.  相似文献   

2.
Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing.  相似文献   

3.
Myofibroblast transdifferentiation plays a crucial role in the development and progression of renal tubulointerstitial fibrosis. However, the significance of α-smooth muscle actin (α-SMA) expression, which is the major morphological characteristic of myofibroblasts, remains to be determined in detail. The effect of α-SMA expression on fibrosis tissue was examined by using a fibrosis model (collagen gel) in vitro. The transdifferentiation of fibroblasts into myofibroblasts was triggered in the culture medium with 0.5% fetal bovine serum (FBS)+transforming growth factor (TGF)-β1, but not with 10% FBS+TGF-β1. The TGF-β1-induced gel contraction caused by myofibroblasts was greater than that by fibroblasts. Gel contraction by myofibroblasts involved the Ca2+-dependent myosin light chain kinase pathway, as well as the activation of Rho kinase and p38 mitogen-activated protein kinase (MAPK). Taken together, these findings suggest that α-SMA expression in renal interstitial fibroblasts, i.e., myofibroblast transdifferentiation, accelerates the contraction of the tubulointerstitial fibrosis tissue via the Ca2+-dependent pathway, in addition to the pathways involved in fibroblast contraction; this event may lead to renal atrophy and renal failure.  相似文献   

4.
Background information. The activation of fibroblasts into myofibroblasts is a crucial event in healing that is linked to remodelling and scar formation, therefore we determined whether regulation of myofibroblast differentiation via integrins might affect wound healing responses in populations of patient‐matched HOFs (human oral fibroblasts) compared with HDFs (human dermal fibroblasts). Results. Both the HOF and HDF cell types underwent TGF‐β1 (transforming growth factor‐β1)‐induced myofibroblastic differentiation [upregulation of the expression of α‐sma (α‐smooth muscle actin)], although analysis of unstimulated cells indicated that HOFs contained higher basal levels of α‐sma than HDFs (P<0.05). Functional blocking antibodies against the integrin subunits α5 (fibronectin) or αv (vitronectin) were used to determine whether the effects of TGF‐β1 were regulated via integrin signalling pathways. α‐sma expression in both HOFs and HDFs was down‐regulated by antibodies against both α5 and αv. Functionally, TGF‐β1 inhibited cell migration in an in vitro wound model and increased the contraction of collagen gels. Greater contraction was evident for HOFs compared with HDFs, both with and without stimulation by TGF‐β1 (P<0.05). When TGF‐β1‐stimulated cells were incubated with blocking antibodies against α5 and αv, gel contraction was decreased to that of non‐stimulated cells; however, blocking αv or α5 could not restore cellular migration in both HOFs and HDFs. Conclusions. Despite intrinsic differences in their basal state, the cellular events associated with TGF‐β1‐induced myofibroblastic differentiation are common to both HOFs and HDFs, and appear to require differential integrin usage; up‐regulation of α‐sma expression and increases in collagen gel contraction are vitronectin‐ and fibronectin‐receptor‐dependent processes, whereas wound re‐population is not.  相似文献   

5.
Matrix remodeling, critical to embryonic morphogenesis and wound healing, is dependent on the expression of matrix components, their receptors, and matrix proteases. The collagen gel assay has provided an effective model for the examination of the functional role(s) of each of these groups of molecules in matrix remodeling. Previous investigations have indicated that collagen gel contraction involves the β1 integrin family of matrix receptors and is stimulated by several growth factors, including TGF-β, PDGF, and angiotensin II. In particular, collagen gel remodeling by human cells involves the α2β1 and, to a lesser extent the α1β1 integrin complexes. The present studies were undertaken to determine the role of the α1 integrin chain, a collagen/laminin receptor, in collagen gel contration by rodent and avian fibroblasts. A high degree of correlation was found between the expression of the α1β1 integrin complex and the relative ability of cells to contract collagen gels. Further studies using antibodies and antisense oligonucleotides against the α1 integrin indicated a significant role for this integrin chain in contraction of collagen gels by rat cardiac fibroblasts. In addition, antibodies to the α1 integrin chain inhibited migration of these fibroblasts on a collagen substratum, suggesting that at least one role of this integrin is in migration of cells in collagen gels. These results indicate that the α1β integrin complex plays a significant role in cellular interactions with interstital collagen that are involved in matrix remodeling such as is seen during morphogenesis and wound healing. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Shi Q  Liu X  Bai Y  Cui C  Li J  Li Y  Hu S  Wei Y 《PloS one》2011,6(11):e28134
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling.  相似文献   

7.
Differentiation and activation of fibroblasts into myofibroblasts which express α-smooth muscle actin (α-SMA) are essential for wound healing and tissue repair. Change in fibroblast properties is initiated by transforming growth factor β (TGF-β). Here, we sought to investigate whether connexin43 (Cx43), a gap-junctional protein, contributes to differentiation of cardiac fibroblasts to myofibroblasts. In cultured neonatal rat cardiac fibroblasts, we found that expression of α-SMA increases in parallel with Cx43 by using immunocytochemistry, and that knockdown of the endogenous Cx43 activity with antisense oligodeoxynucleotides (AS) inhibits α-SMA expression significantly, while overexpression of Cx43 increases α-SMA expression remarkably. These findings demonstrate that Cx43 contributes to TGF-β signaling to regulate α-SMA expression. Thus, we propose a novel physiologic function of Cx43, which plays a critical role in the pathological activation of cardiac fibroblasts in the myocardial fibrosis associated with heart failure.  相似文献   

8.
The behavior of fibroblasts on patterned substrates was examined in order to elucidate the role of dermal structure in wound healing. Dermal fibroblasts were cultured on micro-patterned silicone elastomer substrates designed to enforce cell adhesion only to fibronectin microdots. The morphology, expression of α-smooth muscle actin (α-SMA), proliferation, apoptotic cells, and soluble collagen production of cells were measured. Cells grown on patterned substrates showed some signs of a scar-fibroblast phenotype such as: elongated pseudopodia, enhanced expression of alpha smooth muscle actin (α-SMA), and increased collagen/pre-collagen, in comparison to unpatterned controls. Cells also showed low proliferation rates and high apoptotic index. The results showed that the microdot arrays, acting as a grid of limited focal adhesion sites, could force cells to adopt constrained morphologies and limited adhesion areas, which affect the cytoskeleton, ultimately leading to expression of a scar-tissue fibroblast phenotype. This study provides insight into the regulatory mechanisms of micro-topology on cell behavior in wound healing.  相似文献   

9.
Recently, accumulating reports have suggested the importance of endoplasmic reticulum (ER) stress signaling in the differentiation of several tissues and cells, including myoblasts and osteoblasts. Secretory cells are easily subjected to ER stress during maturation of their secreted proteins. Skin fibroblasts produce and release several proteins, such as collagens, matrix metalloproteinases (MMPs), the tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAGs), and the production of these proteins is increased at wound sites. Differentiation of fibroblasts into myofibroblasts is one of the key factors for wound healing and that TGF-β can induce fibroblast differentiation into myofibroblasts, which express α-smooth muscle actin. Well-differentiated myofibroblasts show increased production of collagen and TGF-β, and bring about wound healing. In this study, we examined the effects of ER stress signaling on the differentiation of fibroblasts, which is required for wound healing, using constitutively ER stress-activated primary cultured fibroblasts. The cells expressed positive α-smooth muscle actin signals without TGF-β stimulation compared with control fibroblasts. Gel-contraction assays suggested that ER stress-treated primary fibroblasts caused stronger shrinkage of collagen gels than control cells. These results suggest that ER stress signaling could accelerate the differentiation of fibroblasts to myofibroblasts at injured sites. The present findings may provide important insights for developing therapies to improve wound healing.  相似文献   

10.
Fibrosis is a frequent complication of diabetes mellitus in many organs and tissues but the mechanism of how diabetes-induced glycation of extracellular matrix proteins impacts the formation of fibrotic lesions is not defined. As fibrosis is mediated by myofibroblasts, we investigated the effect of collagen glycation on the conversion of human cardiac fibroblasts to myofibroblasts. Collagen glycation was modeled by the glucose metabolite, methylglyoxal (MGO). Cells cultured on MGO-treated collagen exhibited increased activity of the α-smooth muscle actin promoter and enhanced expression of α-smooth muscle actin, ED-A fibronectin and cadherin, which are markers for myofibroblasts. In cells remodeling floating or stress-relaxed collagen gels, MGO treatment promoted more contraction (p < 0.025) than vehicle controls, which was MGO dose-dependent. Transwell assays showed that cell migration was increased by MGO-treated collagen (p < 0.025). In shear-force detachment assays, cells on MGO-treated collagen were less adherent than untreated collagen, and the formation of high affinity, β1 integrin-dependent adhesions was inhibited. MGO-collagen-induced expression of SMA was dependent on TGF-β but not on Rho kinase. We conclude that collagen glycation augments the formation and migration of myofibroblasts, critical processes in the development of fibrosis in diabetes.  相似文献   

11.
Hypertrophic scars (HTS) and keloids are challenging problems. Their pathogenesis results from an overproduction of fibroblasts and excessive deposition of collagen. Studies suggest a possible anti-scarring effect of basic fibroblast growth factor (bFGF) during wound healing, but the precise mechanisms of bFGF are still unclear. In view of this, we investigated the therapeutic effects of bFGF on HTS animal model as well as human scar fibroblasts (HSF) model. We show that bFGF promoted wound healing and reduced the area of flattened non-pathological scars in rat skin wounds and HTS in the rabbit ear. We provide evidence of a new therapeutic strategy: bFGF administration for the treatment of HTS. The scar elevation index (SEI) and epidermal thickness index (ETI) was also significantly reduced. Histological reveal that bFGF exhibited significant amelioration of the collagen tissue. bFGF regulated extracellular matrix (ECM) synthesis and degradation via interference in the collagen distribution, the α-smooth muscle actin (α-SMA) and transforming growth factor-1 (TGF-β1) expression. In addition, bFGF reduced scarring and promoted wound healing by inhibiting TGFβ1/SMAD-dependent pathway. The levels of fibronectin (FN), tissue inhibitor of metalloproteinase-1 (TIMP-1) collagen I, and collagen III were evidently decreased, and matrix metalloproteinase-1 (MMP-1) and apoptosis cells were markedly increased. These results suggest that bFGF possesses favorable therapeutic effects on hypertrophic scars in vitro and in vivo, which may be an effective cure for human hypertrophic scars.  相似文献   

12.
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.  相似文献   

13.
Fetal wounds heal without scar formation, fibrosis, or contracture. Compared with adult wounds, they are characterized by major differences in the extracellular matrix and the absence of myofibroblastic cells. The reasons for these differences are not well known and determination of factors affecting the absence of scarring in the fetus may lead to strategies for controlling adult pathological scarring. In the present study, we have assessed the effects of serum on the behavior of normal human dermal fibroblasts. Using an in vitro approach, we investigated the effects of fetal and adult serum on cell properties such as growth rate, collagen synthesis, gelatinase activities, and differentiation to myofibroblasts using biochemical, morphological, and ultrastructural parameters. We studied the induction of α-smooth muscle (α-SM) actin in fibroblasts, and its correlation with increased collagen gel contraction by the cells. Our results showed that, compared with FBS (fetal bovine serum), postnatal calf serum (PCS) decreased mitogenic activity and collagenase synthesis but not collagen synthesis. Furthermore, cells cultured with PCS differentiated to myofibroblasts with an increase in cell diameter, number of stress fibers, α-SM actin expression, and collagen gel contraction. To characterize the molecules involved in this differentiation process, the amount of transforming growth factor β (TGFβ) in FBS and PCS was determined and the effect of neutralizing anti-TGFβ antibody was evaluated. It was determined that FBS contained more TGFβ than PCS, but that essentially all the TGFβ was latent in both sera. However, results obtained with anti-TGFβ antibody show that active TGFβ is present when human dermal fibroblasts are cultured with medium containing PCS. These results suggest that, in the presence of PCS but not FBS, the cells either produce active TGFβ or an enzyme that is able to activate latent serum TGFβ. Alternatively, sera may contain two different forms of latent TGFβ, the PCS form being activated by the dermal fibroblast cells. A similar mechanism may be involved, at least in part, in skin wound healing and may underlie the appearance of myofibroblasts in postnatal wounds. J. Cell. Physiol. 171:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

15.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

16.
Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.  相似文献   

17.
Previous studies showed that CD151-null mice have a skin wound healing deficit. To gain an understanding of the role of CD151 in re-epithelialisation and dermal contraction, keratinocyte and fibroblast functions were assayed. Primary CD151-null keratinocytes displayed defective migration on Matrigel (a basement membrane equivalent) and laminin-332, the primary adhesion component of basement membranes, but not on collagen-I. Adhesion, spreading and proliferation were also deficient on laminin-332, but not collagen-I. The data suggest that loss of CD151 impairs the function of its primary interaction partners, integrin alpha3beta1- and/or alpha6beta4 which bind to laminin-332. Skin fibroblasts also produce CD151 mRNA. CD151-null fibroblasts migrated significantly faster on collagen I than wild type fibroblasts, confirming that they possess functional collagen receptors. However, no significant decrease in the ability of CD151-null fibroblasts to cause contraction in floating collagen gel assays in response to transforming growth factor beta-1 (TGF-beta1) or platelet derived growth factor (PDGF-BB) was observed, nor was there an effect on fibroblast adhesion or proliferation on collagen-I. The data implicate CD151 as a facilitator of laminin-332-mediated keratinocyte functions that impact on the re-epithelialisation process intrinsic to wound healing and further suggest a potential novel role for CD151 in fibroblast migration.  相似文献   

18.
19.
Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.  相似文献   

20.
In vivo,α-smooth muscle actin (SMA) is expressedde novoand temporarily by fibroblastic cells during wound healing and correlates particularly with wound contraction. In culture, the presence of varying proportions of cells expressing and not expressing this actin isoform (α-SMA-positive and α-SMA-negative cells) is characteristic of fibroblastic populations from different tissues. It is possible that mechanisms controlling the expression of actin isoforms, and thus modulating cytoskeleton-related functions, play a major role in the organization of cell shape and motility. We have compared the cell shape as well as the cytoskeleton and focal contact organization in α-SMA-positive and α-SMA-negative rat fibroblasts from various organs (i.e., skeletal muscle, dermis, subcutaneous tissue, and lung). Within each category, i.e., α-SMA-positive or α-SMA-negative fibroblasts, no significant morphological differences were seen among populations derived from different tissues. In contrast, α-SMA-positive and α-SMA-negative fibroblasts were significantly different, independently of their origin: α-SMA-positive cells had larger average areas, higher numbers of narrow extensions at the edges, larger focal adhesions with the substratum, and a more important network of cellular fibronectin than α-SMA-negative cells. Thus, α-SMA-positive and α-SMA-negative variants naturally present in fibroblastic populations exhibit important phenotypic differences probably associated with distinct functional activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号