首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Antimicrobial peptides (AMPs) represent the first defense line against infection when organisms are infected by pathogens. These peptides are generally good targets for the development of antimicrobial agents. Peptide amide analogs of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, were designed, synthesized and examined for antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Within the peptides synthesized, we discovered an 11-mer peptide, KRLRRVWRRWR-amide, which exhibited potent antimicrobial activity while very little hemolytic activity in human erythrocytes was observed even at high dose level (100 μM). With further modifications, this peptide could be developed into a potent antimicrobial agent in the future.  相似文献   

2.
Considering the biological mechanism and in vivo stability of antimicrobial peptides, we designed and synthesized novel unnatural amino acids with more positively charged and bulky side chain group than lysine residue. The unusual amino acids, which were synthesized by either solution phase or solid phase, were incorporated into an antimicrobial peptide. Its effect on the stability, activity, and the structure of the peptide was studied to evaluate the potential of these novel unnatural amino acids as a building block for antimicrobial peptides. The incorporation of this unusual amino acid increased the resistance of the peptide against serum protease more than three times without a decrease in the activity. Circular dichroism spectra of the peptides indicated that all novel unnatural amino acids must have lower helical forming propensities than lysine. Our results indicated that the unnatural amino acids synthesized in this study could be used not only as a novel building block for combinatorial libraries of antimicrobial peptides, but also for structure–activity relationship studies about antimicrobial peptides.  相似文献   

3.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

4.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Chen Z  Yang X  Liu Z  Zeng L  Lee W  Zhang Y 《Biochimie》2012,94(2):328-334
The characterization of new natural antimicrobial peptides (AMPs) can help to solve the serious problem of bacterial resistance to currently used antibiotics. In the current study, we analyzed two families of AMPs from the Chinese torrent frog Amolops jingdongensis with a range of bioactivities. The first family of peptides, named jindongenin-1a, is 24 amino acids in length; a BLAST search of jindongenin-1a revealed no sequence similarity with other AMPs. The second family consists of two peptides containing 29 amino acid residues each. These peptides have high sequence similarity with the AMPs of palustrin-2 and are therefore designated palustrin-2AJ1 and palustrin-2AJ2. The cDNA sequences encoding these AMPs have been cloned and the deduced protein sequence of each AMP has been determined by protein sequencing. Sequence and structural analysis showed that each precursor is composed of a putative signal peptide, an N-terminal spacer, a processing site and a disulfide-bridged heptapeptide segment at the C-terminus. We synthesized jindongenin-1a and palustrin-AJ1 to test their antimicrobial, hemolytic, antioxidative and cytotoxic activities. These two peptides showed broad-spectrum antimicrobial activity to standard and clinically isolated strains of bacteria. In addition, they exhibited weak hemolytic activity to human and rabbit erythrocytes under our experimental conditions. Moreover, these peptides also displayed cytotoxic activity against the K562 and HT29 mammalian cell lines and low anti-oxidant activity. These findings provide helpful insight that will be useful in the design of anti-infective peptide agents.  相似文献   

6.
We describe computational approaches for identifying promising lead candidates for the development of peptide antibiotics, in the context of quantitative structure–activity relationships (QSAR) studies for this type of molecule. A first approach deals with predicting the selectivity properties of generated antimicrobial peptide sequences in terms of measured therapeutic indices (TI) for known antimicrobial peptides (AMPs). Based on a training set of anuran AMPs, the concept of sequence moments was used to construct algorithms that could predict TIs for a second test set of natural AMPs and could also predict the effect of point mutations on TI values. This approach was then used to design peptide antibiotics (adepantins) not homologous to known natural or synthetic AMPs. In a second approach, many novel putative AMPs were identified from DNA sequences in EST databases, using the observation that, as a rule, specific subclasses of highly conserved signal peptides are associated exclusively with AMPs. Both anuran and teleost sequences were used to elucidate this observation and its implications. The predicted therapeutic indices of identified sequences could then be used to identify new types of selective putative AMPs for future experimental verification.  相似文献   

7.
BackgroundBacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm.MethodsAntimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure.ResultsSignal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide.ConclusionThe strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents.General significanceThe process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.  相似文献   

8.
In nature, antimicrobial peptides (AMPs) represent the first line of defense against infection by pathogens; thus, they are generally good candidates for the development of antimicrobial agents. Recently, we reported two potent antimicrobial peptides, KWLRRVWRWWR-amide (MAP-04-03) and KRLRRVWRRWR-amide (MAP-04-04), which were derived from a fragment of Ixosin-B-amide (KSDVRRWRSRY). Since some cationic AMPs exhibited cytotoxic activity against cancer cells, in the current study, we further investigated the anticancer activity of these potent antimicrobial peptides by antiproliferative assays and wound-healing assays, and the effect of peptide on the cytoskeleton alteration and cell morphology were analyzed by confocal microscopy. Results indicated that MAP-04-03 not only exhibited inhibitory effects on the proliferation (IC50 = 61.5 μM) and on the cell migration of MCF-7 breast cancer cells (at a concentration of 5 μM), but also affected the cytoskeleton at the concentration of 25 μM. These results demonstrated that MAP-04-03 can serve as a lead peptide analog for developing potent anticancer agents.  相似文献   

9.
Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non‐naturally occurring AMPs. We have used a backbone‐cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity. We focused on beta‐hairpin‐like structuring features. Improvements to the structure of this peptide reduced the activity of the peptide against gram‐negative, Escherichia coli but improved the activity against gram‐positive, Corynebacterium glutamicum. Distinctions in structuring effects on gram‐negative versus gram‐positive activity were also seen in a second peptide system. Structural improvements resulted in a peptide that was more active than the native against gram‐positive bacterium but less active against gram‐negative bacterium. Our results show that there is not always a correlation between improved hairpin‐structuring and activity. Other factors such as the type of bacteria being targeted as well as net positive charge can play a role in the potency of AMPs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The potential usefulness of antimicrobial peptides (AMPs) as antimycobacterial compounds has not been extensively explored. Although a myriad of studies on AMPs from different sources have been done, some of its mechanisms of action are still unknown. Maganins are of particular interest since they do not lyse non-dividing mammalian cells. In this work, AMPs with well-recognized activity against bacteria were synthesized, characterized, purified and their antimycobacterial activity and influence on ATPase activity in mycobacterial plasma membrane vesicles were assessed. Using bioinformatics tools, a magainin-I analog peptide (MIAP) with improved antimicrobial activity was designed. The influence of MIAP on proton (H(+)) pumping mediated by F(1)F(0)-ATPase in plasma membrane vesicles obtained from Mycobacterium tuberculosis was evaluated. We observed that the antimycobacterial activity of AMPs was low and variable. However, the activity of the designed peptide MIAP against M. tuberculosis was 2-fold higher in comparison to magainin-I. The basal ATPase activity of mycobacterial plasma membrane vesicles decreased approximately 24-30% in the presence of AMPs. On the other hand, the MIAP peptide completely abolished the F(1)F(0)-ATPase activity involved in H(+) pumping across M. tuberculosis plasma membranes vesicles at levels similar to the specific inhibitor N,N' dicyclohexylcarbodiimide. These finding suggest that AMPs can inhibit the H(+) pumping F(1)F(0)-ATPase of mycobacterial plasma membrane that potentially interferes the internal pH and viability of mycobacteria.  相似文献   

11.
The presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics. In vitro killing of MRSA by synthetic peptides derived from the alpha-helix or beta-sheet domains of the human cationic peptide ubiquicidin (UBI 1-59), allowed selection of AMPs for possible treatment of MRSA infections. The strongest antibacterial activity was observed for the entire peptide UBI 1-59 and for synthetic fragments comprising amino acids 31-38. The availability, chemical synthesis opportunities, and size of these small peptides, combined with their strong antimicrobial activity towards MRSA make these compounds promising candidates for antimicrobial therapy and detection of infections in man.  相似文献   

12.
Peptide agents are regarded as hopeful candidates to solve life-threatening resistance of pathogenic microorganisms to classic antibiotics due to their unique action mechanisms. Peptidomic and genomic investigation of natural antimicrobial peptides (AMPs) from amphibian skin secretions can provide a large amount of structure-functional information to design peptide antibiotics with therapeutic potential. In the present study, we identified a large number of AMPs from the skins of nine kinds of Chinese odorous frogs. Eighty AMPs were purified from three different odorous frogs and confirmed by peptidomic analysis. Our results indicated that post-translational modification of AMPs rarely happened in odorous frogs. cDNAs encoding precursors of 728 AMPs, including all the precursors of the confirmed 80 native peptides, were cloned from the constructed AMP cDNA libraries of nine Chinese odorous frogs. On the basis of the sequence similarity of deduced mature peptides, these 728 AMPs were grouped into 97 different families in which 71 novel families were identified. Out of these 728 AMPs, 662 AMPs were novel and 28 AMPs were reported previously in other frog species. Our results revealed that identical AMPs were widely distributed in odorous frogs; 49 presently identified AMPs could find their identical molecules in different amphibian species. Purified peptides showed strong antimicrobial activities against 4 tested microbe strains. Twenty-three deduced peptides were synthesized and their bioactivities, including antimicrobial, antioxidant, hemolytic, immunomodulatory and insulin-releasing activities, were evaluated. Our findings demonstrate the extreme diversity of AMPs in amphibian skins and provide plenty of templates to develop novel peptide antibiotics.  相似文献   

13.
The increasing incidence of hospital acquired infections caused by antibiotic resistant pathogens has led to an increase in morbidity and mortality, finding alternative antibiotics unaffected by resistance mechanisms is fundamentally important for treating this problem. Naturally occurring proteins usually carry short peptide fragments that exhibit noticeable biological activity against a wide variety of microorganisms such as bacteria, fungi and protozoa. Traditional discovery of such antimicrobially active fragments (i.e. antimicrobial peptides, AMPs) from protein repertoire is either random or led by chance. Here, we report the use of a rational protocol that combines in silico prediction and in vitro assay to identify potential AMPs with high activity and low toxicity from the entire human genome. In the procedure, a three-step inference strategy is first proposed to perform genome-wide analysis to infer AMPs in a high-throughput manner. By employing this strategy we are able to screen more than one million peptide candidates generated from various human proteins, from which we identify four highly promising samples, and subsequently their antibacterial activity on five strains as well as cytotoxicity on human myoblasts are tested experimentally. As a consequence, two high-activity, low-toxicity peptides are discovered, which could be used as the structural basis to further develop new antibiotics. In addition, from 1491 known AMPs we also derive a quantitative measure called antibacterial propensity index (API) for 20 naturally occurring amino acids, which shows a significant allometric correlation with the theoretical minimal inhibitory concentration of putative peptides against Gram-positive and Gram-negative bacteria. This study may provide a proof-of-concept paradigm for the genome-wide discovery of novel antimicrobial peptides by using a combination of in silico and in vitro analyses.  相似文献   

14.
Zelezetsky I  Pag U  Sahl HG  Tossi A 《Peptides》2005,26(12):2368-2376
In nature, alpha-helical antimicrobial peptides present the small and flexible residue glycine at positions 7 or 14 with a significant frequency. Based on the sequence of the non-proteinogenic alpha-helical model peptide P1(Aib7), with a potent, broad spectrum antimicrobial activity, six peptides were designed by effecting a single amino acid substitution to investigate how tuning the structural characteristics at position 7 could lead to optimization of selectivity without affecting antimicrobial activity against a broad panel of multidrug resistant bacterial and yeast indicator strains. The relationship between structural features (size/hydrophobicity of the side chain as well as conformation and flexibility) and biological activity, in terms of minimum inhibitory concentration, membrane permeabilization kinetics and lysis of red blood cells are discussed. On conversion of the peptide to proteinogenic residues, these principles allowed development of a potent antimicrobial peptide with a reduced cytotoxicity. However, while results suggest that both hydrophobicity of residue 7 and chain flexibility at this position can be modulated to improve selectivity, position 14 is less tolerant of substitutions.  相似文献   

15.
Xu B  Che H  Kang L  Zheng S  Mu S  Wan F 《Zoological science》2012,29(9):553-558
Rana zhenhaiensis, a species of brown frog, is widely distributed in central and south China. In the present study, a total of 14 cDNA sequences encoding eight novel antimicrobial peptides (AMPs) were cloned from the synthesized cDNAs of R. zhenhaiensis skin. The eight novel AMPs belong to four families: brevinin-1 (four peptides), brevinin-2 (one peptide), ranatuerin-2 (one peptide) and chensinin-1 (two peptides), five AMPs from the four families (brevinin-1ZHa, brevinin-1ZHb, brevinin-2ZHa, ranatuerin-2ZHa and chensinin-1ZHa) were chemically synthesized, their antimicrobial and hemolytic activities were examined. The results indicated that the five AMPs possess different antimicrobial and hemolytic activities. Of these, brevinin-2ZHa exhibited the strongest and most broad-spectrum antimicrobial activity. Furthermore, scanning electron microscopy (SEM) experiment was carried out to investigate the potential antimicrobial mechanism of chensinin-1ZHa. The result indicated that chensinin-1ZHa may exert its function through disruption of the bacterial membrane.  相似文献   

16.
Antimicrobial peptides (AMPs) constitute a diverse class of naturally occurring or synthetic antimicrobial molecules that have potential for use in the treatment of drug-resistant infections. Several undesirable properties of AMPs, however, may ultimately hinder their development as antimicrobial agents. Thus, new synthetic strategies, including primarily the de novo design of AMPs, urgently need to be developed. In this study, a series of peptides, H-(RWL) n (n = 1, 2, 3, 4, or 5), were designed. H represents GLRPKYS from the C-terminal sequence of AvBD-4. Our results showed that these RWL-tagged peptides can kill not only bacteria but also human hepatocellular carcinoma HepG2 cells. However, the peptide tagged with two repeats of RWL (GW13) showed less affinity to human embryonic lung fibroblast MRC-5 cells or human red blood cells (hRBCs) than HepG2 cells. These results demonstrated that GW13, with high amphiphilicity, exerted great selectivity toward bacteria and cancer cells, sparing host mammalian cells. The mechanism of action against bacteria was elucidated through combined studies of scanning electron microscopy (SEM) and fluorescence assays, showing that the peptide possessed membrane-lytic activities against microbial cells. The fluorescence assays illustrated that GW13 induced apoptosis in HepG2 cells. The cell morphology of HepG2 cells, observed by SEM, further illustrated that GW13 causes cell death by damaging the cell membrane. Our results indicate that GW13 has considerable potential for future development as an antimicrobial and antitumor agent.  相似文献   

17.
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.  相似文献   

18.
Bacterial resistance to antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) or host defense peptides (HDPs) are vital components of human innate defense system targeting human‐related bacteria. Many bacteria have various mechanisms interfering with AMP activity, causing resistance to AMPs. Since AMPs are considered as potential novel antimicrobial drugs, understanding the mechanisms of bacterial resistance to direct killing of AMPs is of great significance. In this review, a comparative overview of bacterial strategies for resistance to direct killing of various AMPs is presented. Such strategies include bacterial cell envelope modification, AMP degradation, sequestration, expelling, and capsule.  相似文献   

19.
20.
The increase in prevalence of antimicrobial resistance makes the search for new antibiotic agents imperative. Antimicrobial peptides (AMPs) from natural resources have been recognized as suitable tools to combat antibiotic-resistant bacteria. The liver fluke Clonorchis sinensis living in germ-filled environments could be a good source of antimicrobials. Here, we report the use of a rational protocol that combines AMP predictions based on their physicochemical properties and their in vivo stability to discover AMP candidates from the entire genome of C. sinensis. To screen AMP candidates, in silico analyses based on the physicochemical properties of known AMPs, such as length, charge, isoelectric point, and in vitro and in vivo aggregation values were performed. To enhance their in vivo stability, proteins having proteolytic cleavage sites were excluded. As a consequence, four high-activity, highstability peptides were identified. These peptides could be potential starting materials for the development of new AMPs via structural modification and optimization. Thus, this study proposes a refined computational method to develop new AMPs and identifies four AMP candidates, which could serve as templates for further development of peptide antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号