首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sentence comprehension involves timely computing different types of relations between its verbs and noun arguments, such as morphosyntactic, semantic, and thematic relations. Here, we used EEG technique to investigate the potential differences in thematic role computing and lexical-semantic relatedness processing during on-line sentence comprehension, and the interaction between these two types of processes. Mandarin Chinese sentences were used as materials. The basic structure of those sentences is “Noun+Verb+‘le’+a two-character word”, with the Noun being the initial argument. The verb disambiguates the initial argument as an agent or a patient. Meanwhile, the initial argument and the verb are highly or lowly semantically related. The ERPs at the verbs revealed that: relative to the agent condition, the patient condition evoked a larger N400 only when the argument and verb were lowly semantically related; however, relative to the high-relatedness condition, the low-relatedness condition elicited a larger N400 regardless of the thematic relation; although both thematic role variation and semantic relatedness variation elicited N400 effects, the N400 effect elicited by the former was broadly distributed and reached maximum over the frontal electrodes, and the N400 effect elicited by the latter had a posterior distribution. In addition, the brain oscillations results showed that, although thematic role variation (patient vs. agent) induced power decreases around the beta frequency band (15–30 Hz), semantic relatedness variation (low-relatedness vs. high-relatedness) induced power increases in the theta frequency band (4–7 Hz). These results suggested that, in the sentence context, thematic role computing is modulated by the semantic relatedness between the verb and its argument; semantic relatedness processing, however, is in some degree independent from the thematic relations. Moreover, our results indicated that, during on-line sentence comprehension, thematic role computing and semantic relatedness processing are mediated by distinct neural systems.  相似文献   

2.
Research on language comprehension using event-related potentials (ERPs) reported distinct ERP components reliably related to the processing of semantic (N400) and syntactic information (P600). Recent ERP studies have challenged this well-defined distinction by showing P600 effects for semantic and pragmatic anomalies. So far, it is still unresolved whether the P600 reflects specific or rather common processes. The present study addresses this question by investigating ERPs in response to a syntactic and pragmatic (irony) manipulation, as well as a combined syntactic and pragmatic manipulation. For the syntactic condition, a morphosyntactic violation was applied, whereas for the pragmatic condition, such as “That is rich”, either an ironic or literal interpretation was achieved, depending on the prior context. The ERPs at the critical word showed a LAN-P600 pattern for syntactically incorrect sentences relative to correct ones. For ironic compared to literal sentences, ERPs showed a P200 effect followed by a P600 component. In comparison of the syntax-related P600 to the irony-related P600, distributional differences were found. Moreover, for the P600 time window (i.e., 500–900 ms), different changes in theta power between the syntax and pragmatics effects were found, suggesting that different patterns of neural activity contributed to each respective effect. Thus, both late positivities seem to be differently sensitive to these two types of linguistic information, and might reflect distinct neurocognitive processes, such as reanalysis of the sentence structure versus pragmatic reanalysis.  相似文献   

3.
During sentence production, linguistic information (semantics, syntax, phonology) of words is retrieved and assembled into a meaningful utterance. There is still debate on how we assemble single words into more complex syntactic structures such as noun phrases or sentences. In the present study, event-related potentials (ERPs) were used to investigate the time course of syntactic planning. Thirty-three volunteers described visually animated scenes using naming formats varying in syntactic complexity: from simple words (‘W’, e.g., “triangle”, “red”, “square”, “green”, “to fly towards”), to noun phrases (‘NP’, e.g., “the red triangle”, “the green square”, “to fly towards”), to a sentence (‘S’, e.g., “The red triangle flies towards the green square.”). Behaviourally, we observed an increase in errors and corrections with increasing syntactic complexity, indicating a successful experimental manipulation. In the ERPs following scene onset, syntactic complexity variations were found in a P300-like component (‘S’/‘NP’>‘W’) and a fronto-central negativity (linear increase with syntactic complexity). In addition, the scene could display two actions - unpredictable for the participant, as the disambiguation occurred only later in the animation. Time-locked to the moment of visual disambiguation of the action and thus the verb, we observed another P300 component (‘S’>‘NP’/‘W’). The data show for the first time evidence of sensitivity to syntactic planning within the P300 time window, time-locked to visual events critical of syntactic planning. We discuss the findings in the light of current syntactic planning views.  相似文献   

4.
Current hypotheses suggest that speech segmentation—the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing—is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires “flexible” theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech.  相似文献   

5.
Children’s interpretations of sentences containing focus particles do not seem adult-like until school age. This study investigates how German 4-year-old children comprehend sentences with the focus particle ‘nur’ (only) by using different tasks and controlling for the impact of general cognitive abilities on performance measures. Two sentence types with ‘only’ in either pre-subject or pre-object position were presented. Eye gaze data and verbal responses were collected via the visual world paradigm combined with a sentence-picture verification task. While the eye tracking data revealed an adult-like pattern of focus particle processing, the sentence-picture verification replicated previous findings of poor comprehension, especially for ‘only’ in pre-subject position. A second study focused on the impact of general cognitive abilities on the outcomes of the verification task. Working memory was related to children’s performance in both sentence types whereas inhibitory control was selectively related to the number of errors for sentences with ‘only’ in pre-subject position. These results suggest that children at the age of 4 years have the linguistic competence to correctly interpret sentences with focus particles, which–depending on specific task demands–may be masked by immature general cognitive abilities.  相似文献   

6.
We investigated whether and how comprehending sentences that describe a social context influences our motor behaviour. Our stimuli were sentences that referred to objects having different connotations (e.g., attractive/ugly vs. smooth/prickly) and that could be directed towards the self or towards “another person” target (e.g., “The object is ugly/smooth. Bring it to you/Give it to another person”). Participants judged whether each sentence was sensible or non-sensible by moving the mouse towards or away from their body. Mouse movements were analysed according to behavioral and kinematics parameters. In order to enhance the social meaning of the linguistic stimuli, participants performed the task either individually (Individual condition) or in a social setting, in co-presence with the experimenter. The experimenter could either act as a mere observer (Social condition) or as a confederate, interacting with participants in an off-line modality at the end of task execution (Joint condition). Results indicated that the different roles taken by the experimenter affected motor behaviour and are discussed within an embodied approach to language processing and joint actions.  相似文献   

7.
8.
The ability to integrate contextual information is important for the comprehension of emotional and social situations. While some studies have shown that emotional processes and social cognition are impaired in people with hypomanic personality trait, no results have been reported concerning the neurophysiological processes mediating the processing of emotional information during the integration of contextual social information in this population. We therefore chose to conduct an ERP study dealing with the integration of emotional information in a population with hypomanic personality trait. Healthy participants were evaluated using the Hypomanic Personality Scale (HPS), and ERPs were recorded during a linguistic task in which participants silently read sentence pairs describing short social situations. The first sentence implicitly conveyed the positive or negative emotional state of a character. The second sentence was emotionally congruent or incongruent with the first sentence. We analyzed the difference in the modulation of two components (N400 and LPC) in response to the emotional word present at the end of the “target” sentences as a function of the HPS score and the emotional valence of the context. Our results showed a possible modulation of the N400 component in response to both positive and negative context among the participants who scored high on the Mood Volatility subscale of the Hypomanic Personality Scale. These results seem to indicate that the participants with hypomanic personality traits exhibited specificities in the integration of emotions at the level of the early-mobilized neurocognitive processes (N400). Participants with hypomanic personality traits found it difficult to integrate negative emotional contexts, while simultaneously exhibiting an enhanced integration of positive emotional contexts.  相似文献   

9.
The present study investigates how sequential coherence in sentence pairs (events in sequence vs. unrelated events) affects the perceived ability to form a mental image of the sentences for both auditory and visual presentations. In addition, we investigated how the ease of event imagery affected online comprehension (word reading times) in the case of sequentially coherent and incoherent sentence pairs. Two groups of comprehenders were identified based on their self-reported ability to form vivid mental images of described events. Imageability ratings were higher and faster for pairs of sentences that described events in coherent sequences rather than non-sequential events, especially for high imagers. Furthermore, reading times on individual words suggested different comprehension patterns with respect to sequence coherence for the two groups of imagers, with high imagers activating richer mental images earlier than low imagers. The present results offer a novel link between research on imagery and discourse coherence, with specific contributions to our understanding of comprehension patterns for high and low imagers.  相似文献   

10.
The Simple View of Reading (SVR) in Chinese was examined in a genetically sensitive design. A total of 270 pairs of Chinese twins (190 pairs of monozygotic twins and 80 pairs of same-sex dizygotic twins) were tested on Chinese vocabulary and word reading at the mean age 7.8 years and reading comprehension of sentences and passages one year later. Results of behavior-genetic analyses showed that both vocabulary and word reading had significant independent genetic influences on reading comprehension, and the two factors together accounted for most but not all of the genetic influences on reading comprehension. In addition, sentence comprehension had a stronger genetic correlation with word reading while passage comprehension showed a trend of stronger genetic overlap with vocabulary. These findings suggest that the genetic foundation of the SVR in Chinese is largely supported in that language comprehension and decoding are two core skills for reading comprehension in nonalphabetic as well as alphabetic written languages.  相似文献   

11.
M W Chee  D Caplan  C S Soon  N Sriram  E W Tan  T Thiel  B Weekes 《Neuron》1999,23(1):127-137
Comprehension of visually presented sentences in fluent bilinguals was studied with functional magnetic resonance imaging (fMRI) using a set of conceptually similar sentences in two orthographically and phonologically distinct languages, Mandarin and English. Responses were monitored during scanning. Sentence comprehension in each language was compared to fixation in nine subjects and Tamil-like pseudo-word strings in five subjects. Spatially congruent activations in the prefrontal, temporal, and superior parietal regions and in the anterior supplementary motor area were observed for both languages and in both experiments at the individual and group levels of analysis. Proficient bilinguals exposed to both languages early in life utilize common neuroanatomical regions during the conceptual and syntactic processing of written language irrespective of their differences in surface features.  相似文献   

12.
Using event-related fMRI in a sample of 42 healthy participants, we compared the cerebral activity maps obtained when classifying spoken sentences based on the mental content of the main character (belief, deception or empathy) or on the emotional tonality of the sentence (happiness, anger or sadness). To control for the effects of different syntactic constructions (such as embedded clauses in belief sentences), we subtracted from each map the BOLD activations obtained during plausibility judgments on structurally matching sentences, devoid of emotions or ToM. The obtained theory of mind (ToM) and emotional speech comprehension networks overlapped in the bilateral temporo-parietal junction, posterior cingulate cortex, right anterior temporal lobe, dorsomedial prefrontal cortex and in the left inferior frontal sulcus. These regions form a ToM network, which contributes to the emotional component of spoken sentence comprehension. Compared with the ToM task, in which the sentences were enounced on a neutral tone, the emotional sentence classification task, in which the sentences were play-acted, was associated with a greater activity in the bilateral superior temporal sulcus, in line with the presence of emotional prosody. Besides, the ventromedial prefrontal cortex was more active during emotional than ToM sentence processing. This region may link mental state representations with verbal and prosodic emotional cues. Compared with emotional sentence classification, ToM was associated with greater activity in the caudate nucleus, paracingulate cortex, and superior frontal and parietal regions, in line with behavioral data showing that ToM sentence comprehension was a more demanding task.  相似文献   

13.
14.

Background

Behavioral studies have provided evidence for an action–sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes.

Methodology/Principal Findings

Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition.

Conclusions/Significance

The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction.  相似文献   

15.
Our goal of this study is to characterize the functions of language areas in most precise terms. Previous neuroimaging studies have reported that more complex sentences elicit larger activations in the left inferior frontal gyrus (L. F3op/F3t), although the most critical factor still remains to be identified. We hypothesize that pseudowords with grammatical particles and morphosyntactic information alone impose a construction of syntactic structures, just like normal sentences, and that “the Degree of Merger” (DoM) in recursively merged sentences parametrically modulates neural activations. Using jabberwocky sentences with distinct constructions, we fitted various parametric models of syntactic, other linguistic, and nonlinguistic factors to activations measured with functional magnetic resonance imaging. We demonstrated that the models of DoM and “DoM+number of Search (searching syntactic features)” were the best to explain activations in the L. F3op/F3t and supramarginal gyrus (L. SMG), respectively. We further introduced letter strings, which had neither lexical associations nor grammatical particles, but retained both matching orders and symbol orders of sentences. By directly contrasting jabberwocky sentences with letter strings, localized activations in L. F3op/F3t and L. SMG were indeed independent of matching orders and symbol orders. Moreover, by using dynamic causal modeling, we found that the model with a inhibitory modulatory effect for the bottom-up connectivity from L. SMG to L. F3op/F3t was the best one. For this best model, the top-down connection from L. F3op/F3t to L. SMG was significantly positive. By using diffusion-tensor imaging, we confirmed that the left dorsal pathway of the superior longitudinal and arcuate fasciculi consistently connected these regions. Lastly, we established that nonlinguistic order-related and error-related factors significantly activated the right (R.) lateral premotor cortex and R. F3op/F3t, respectively. These results indicate that the identified network of L. F3op/F3t and L. SMG subserves the calculation of DoM in recursively merged sentences.  相似文献   

16.
When learning a new language, grammar--although difficult--is very important, as grammatical rules determine the relations between the words in a sentence. There is evidence that very young infants can detect rules determining the relation between neighbouring syllables in short syllable sequences. A critical feature of all natural languages, however, is that many grammatical rules concern the dependency relation between non-neighbouring words or elements in a sentence i.e. between an auxiliary and verb inflection as in is singing. Thus, the issue of when and how children begin to recognize such non-adjacent dependencies is fundamental to our understanding of language acquisition. Here, we use brain potential measures to demonstrate that the ability to recognize dependencies between non-adjacent elements in a novel natural language is observable by the age of 4 months. Brain responses indicate that 4-month-old German infants discriminate between grammatical and ungrammatical dependencies in auditorily presented Italian sentences after only brief exposure to correct sentences of the same type. As the grammatical dependencies are realized by phonologically distinct syllables the present data most likely reflect phonologically based implicit learning mechanisms which can serve as a precursor to later grammar learning.  相似文献   

17.
In the rodent hippocampus, a phase precession phenomena of place cell firing with the local field potential (LFP) theta is called “theta phase precession” and is considered to contribute to memory formation with spike time dependent plasticity (STDP). On the other hand, in the primate hippocampus, the existence of theta phase precession is unclear. Our computational studies have demonstrated that theta phase precession dynamics could contribute to primate–hippocampal dependent memory formation, such as object–place association memory. In this paper, we evaluate human theta phase precession by using a theory–experiment combined analysis. Human memory recall of object–place associations was analyzed by an individual hippocampal network simulated by theta phase precession dynamics of human eye movement and EEG data during memory encoding. It was found that the computational recall of the resultant network is significantly correlated with human memory recall performance, while other computational predictors without theta phase precession are not significantly correlated with subsequent memory recall. Moreover the correlation is larger than the correlation between human recall and traditional experimental predictors. These results indicate that theta phase precession dynamics are necessary for the better prediction of human recall performance with eye movement and EEG data. In this analysis, theta phase precession dynamics appear useful for the extraction of memory-dependent components from the spatio–temporal pattern of eye movement and EEG data as an associative network. Theta phase precession may be a common neural dynamic between rodents and humans for the formation of environmental memories.  相似文献   

18.
Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate network properties. To this end, we constructed brain functional networks based on 27 subjects’ fMRI data that was collected while performing explicit and implicit language tasks. We found that network properties and network hubs corresponding to the implicit language task were similar to those associated with the explicit language task. We also found common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may modulate the properties of brain functional networks.  相似文献   

19.
How does language comprehension interact with motor activity? We investigated the conditions under which comprehending an action sentence affects people''s balance. We performed two experiments to assess whether sentences describing forward or backward movement modulate the lateral movements made by subjects who made sensibility judgments about the sentences. In one experiment subjects were standing on a balance board and in the other they were seated on a balance board that was mounted on a chair. This allowed us to investigate whether the action compatibility effect (ACE) is robust and persists in the face of salient incompatibilities between sentence content and subject movement. Growth-curve analysis of the movement trajectories produced by the subjects in response to the sentences suggests that the ACE is indeed robust. Sentence content influenced movement trajectory despite salient inconsistencies between implied and actual movement. These results are interpreted in the context of the current discussion of embodied, or grounded, language comprehension and meaning representation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号