首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses.  相似文献   

2.
OBJECTIVE: A micro-molecule peptide TP1623 of 99mTc-human epithelial growth factor receptor 2 (HER2) was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. METHODS: TP1623 was chemically synthesized and labeled with 99mTc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231) and cell binding activity were measured. Biodistribution of 99mTC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin–eosin (HE) and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99mTc- TP1623 and the tumor. RESULTS: The labeling ratio of 99mTc-TP1623, specific activity, and radiochemical purity (RCP) after 6 h at room temperature were (97.39 ± 0.23)%, (24.61 ± 0.06) TBq/mmol, and (93.25 ± 0.06)%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99mTc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in tumors in competitive inhibition of imaging, which indicates the combination of 99mTc-TP1623 and tumor was mediated by HER2. CONCLUSION: High labeling ratio and specific activity of 99mTc-TP1623 is successfully prepared; it is a molecular imaging agent for HER2-positive tumors that has potential applicative value.  相似文献   

3.
In recent years, the diagnostic and therapeutic uses of radioisotopes have shown significant progress. Immunoglobulin (Ig) appears to be a promising tracer, particularly due to its ability to target selected antigens. The main objective of this study is to optimize and assess an Ig radiolabeling method with Technetium 99m (99mTc), an attractive radioelement used widely for diagnostic imaging. Monoclonal anti-CD20 IgG was retained to study in vitro and in vivo radiolabeling impact. After IgG derivatization with 2-iminothiolane, IgG-SH was radiolabeled by an indirect method, using a 99mTc-tricarbonyl core. Radiolabeling stability was evaluated over 24h by thin-layer chromatography. IgG integrity was checked by sodium dodecyl sulfate—polyacrylamide gel electrophoresis coupled with Western blot and autoradiography. The radiolabeled Ig’s immunoaffinity was assessed in vitro by a radioimmunoassay method and binding experiments with cells (EL4-hCD20 and EL4-WT). Biodistribution studies were performed in normal BALB/c mice. Tumor uptake was assessed in mice bearing EL4-hCD20 and EL4-WT subcutaneous xenografts. With optimized method, high radiolabeling yields were obtained (95.9 ± 3.5%). 99mTc-IgG-SH was stable in phosphate-buffered saline (4°C and 25°C) and in serum (37°C), even if important sensitivity to transchelation was observed. IgG was not degraded by derivatization and radiolabeling, as shown by Western blot and autoradiography results. 99mTc-anti-CD20 IgG-SH immunoaffinity was estimated with Kd = 35 nM by both methods. In vivo biodistribution studies for 48h showed significant accumulation of radioactivity in plasma, liver, spleen, lungs and kidneys. Planar scintigraphy of mice bearing tumors showed a significant uptake of 99mTc-anti-CD20 IgG-SH in CD20+ tumor versus CD20- tumor. Radiolabeling of derivatized IgG with 99mTc-tricarbonyl was effective, stable and required few antibody amounts. This attractive radiolabeling method is “antibody safe” and preserves Ig affinity for antigen, as shown by both in vitro and in vivo experiments. This method could easily be used with noncommercial IgG or other antibody isotypes.  相似文献   

4.
Bombesin is a neuropeptide widely studied due to its ability to target various types of cancers. Technetium-99m on the other hand is ideal for diagnostic tumor targeting. The aim of the present study is the investigation of the coupling of the ligand (S)-(2-(2′-pyridyl)ethyl)-d,l-cysteine with the BN-peptide Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met(CONH2) through the spacer aminohexanoic acidand the labeling of the resulting derivative MBN with the synthon [M(CO)3(H2O)3]+ (M = 99mTc, Re). The peptide was synthesized according to the SPPS method, purified and characterized by ESI-MS. The new 99mTc-labeled biomolecule was stable in vitro, showed high affinity for the human GRP receptor expressed in PC3 cells and the rate of internalization was found to be time-dependent tissue distribution of the radiopeptide was evaluated in normal mice and in prostate cancer experimental models and significant radioactivity uptake was observed in the pancreas of normal mice as well as in PC3 tumors. Dynamic studies of the radiopeptide showed satisfactory tumor images.  相似文献   

5.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The 2-[(3-carboxy-1-oxopropyl)amino]-2-deoxy-d-glucose (CPADG) was synthesized and radiolabeled with 99mTcO4 to obtain the 99mTc–CPADG complex in high yield. It was stable over 6 h in saline at room temperature and in serum at 37 °C. The partition coefficient and electrophoresis results indicated that the complex was hydrophilic and cationic. In vitro cell studies showed there was an increase in the uptake of 99mTc–CPADG as a function of incubation time and 99mTc–CPADG was possibly transported via the glucose transporters. The biodistribution of 99mTc–CPADG in mice bearing S 180 tumor showed that the complex accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time and reached 1.91 and 5.05 at 4 h post-injection. Single photon emission computed tomography (SPECT) image studies showed there was an obvious accumulation in tumor sites, suggesting 99mTc–CPADG would be a promising candidate for tumor imaging.  相似文献   

7.
《Translational oncology》2020,13(12):100854
Discovery of 99mTc-labeled imidazole derivatives as a potential radiotracer for hypoxic tumor imaging is considered to be of great interest because of non-invasive detection capabilities. 2-Mercaptobenzimidazole (2-MBI) was successfully synthesized, characterized and radiolabeled with [99mTc (CO)3(H2O)3]+ intermediate to form 99mTc-2-MBI complex with radiochemical purity of ≥95% yield as observed by instant-thin layer chromatography (ITLC) and radio-high performance liquid chromatography (radio-HPLC). The 99mTc-2-MBI complex was observed to be stable in saline and serum with no noticeable decomposition at room temperature and 37 °C, respectively, over a time period of 24 h. Biodistribution results in Balb/c mice bearing S180 tumor show that 99mTc-2-MBI highly internalized in tumor tissue, also possess preferably high tumor/muscle and tumor/blood ratios 4.14 ± 0.77 and 3.91 ± 0.63, respectively at 24 h incubation. Scintigraphic imaging study shows 99mTc-2-MBI is visibly accumulated in hypoxic tumor tissue, suggesting it would be a promising radiotracer for early stage diagnosis of tumor hypoxia.  相似文献   

8.
The in vitro labeling and stability of 99mTc-labeled antibody Fab′ fragments prepared by a direct labeling technique were evaluated. Eight antibody fragments derived from murine IgG1 (N = 5), IgG2a (N = 2) and IgG3 (N = 1) isotypes were labeled with a preformed 99mTc-d-glucarate complex. No loss of radioactivity incorporation was observed for all the 99mTc-labeled antibody fragments after 24 h incubation at 37 °C. The 99mTc-labeled antibody fragments (IgG1, N = 2; IgG2a, N = 2; IgG3, N = 1) were stable upon challenge with DTPA, EDTA or acidic pH. Furthermore, using the affinity chromatography technique, two of the 99mTc-labeled antibody fragments displayed no loss of immunoreactivity after prolonged incubation in phosphate buffer up to 24 h at 37 °C. The bonding between 99mTc and antibody fragments was elucidated by challenging with a diamide ditholate (N2S2) compound. The Fab′ with IgG2a isotype displayed tighter binding to 99mTc in comparison to the Fab′ from IgG1 and IgG3 isotype in N2S2 challenge and incubation with human plasma. The in vivo biodistribution of five 99mTc-labeled fragments were evaluated in normal mice. In conclusion, the direct labeling method allows stable 99mTc labeling of antibody fragments from three of the major murine isotypes.  相似文献   

9.
Angiogenesis imaging agents for single photon emission computed tomography (SPECT) play a role in diagnosing tumor-induced angiogenesis as well as tumor metastasis. We synthesized and evaluated radiolabeled RGD glycopeptides by incorporation of the [99mTc(CO)3(H2O)3]+. 99mTc labeled glucosamino-D-c(RGDfK) ([99mTc]2) was prepared in 90–93% radiochemical yields (decay corrected). In vitro cell binding assays demonstrated selective binding [99mTc]2 to human umbilical vein endothelial (HUVE) cells, with inhibition of binding to 37.3% of control levels by 10 μM of cold authentic compounds. In addition, [99mTc]2 was shown to have high binding affinity to purified αvβ3 integrin (IC50 = 1.5 nM). These results suggest that these radiolabeled RGD glycopeptides may have value for non-invasive assessment of angiogenesis.  相似文献   

10.
To elucidate a factor required for tumor-imaging 99mTc-labeled radiopharmaceuticals, in vivo behaviors of 99mTc-l-cysteine (99mTc-Cys) and 99mTc-2-mercaptoethylamine (99mTc-ME) were compared with that of 99mTc-dl-homocysteine (99mTc-Hcy) which had been found to accumulate in several experimental tumors. When these three complexes were intravenously injected into mice bearing Ehrlich solid tumor, their tumor affinity was found to depend on their binding ability to serum albumin; 99mTc-Hcy, the albumin-binding ability of which was highest of the three, was the most tumor-tropic. When the albumin-bound complexes of these three were injected, their tumor distributions were enlarged. These results suggest the importance of serum albumin in serving as a carrier for the transport of 99mTc-Hcy-related compounds to tumor tissue.  相似文献   

11.
The chlorambucil l-histidine conjugate was synthesized and radiolabeled with [99mTc(CO)3]+ core to form the 99mTc(CO)3(His–CB) complex. The radiochemical purity of the complex was over 90%. It had good hydrophilicity and was stable at room temperature. The high initial tumor uptake with certain retention, fast clearance from background, good tumor/non-tumor ratios and satisfactory scintigraphic images highlighted the potential of 99mTc(CO)3(His–CB) as a tumor imaging agent.  相似文献   

12.
The somatostatin receptor subtype 2 (SSTR2) is often highly expressed on neuroendocrine tumors (NETs), making it a popular in vivo target for diagnostic and therapeutic approaches aimed toward management of NETs. In this work, an antagonist peptide (sst2-ANT) with high affinity for SSTR2 was modified at the N-terminus with a novel [N,S,O] bifunctional chelator (2) designed for tridentate chelation of rhenium(I) and technetium(I) tricarbonyl cores, [Re(CO)3]+ and [99mTc][Tc(CO)3]+. The chelator-peptide conjugation was performed via a Cu(I)-assisted click reaction of the alkyne-bearing chelator (2) with an azide-functionalized sst2-ANT peptide (3), to yield NSO-sst2-ANT (4). Two synthetic methods were used to prepare Re-4 at the macroscopic scale, which differed based on the relative timing of the click conjugation to the [Re(CO)3]+ complexation by 2. The resulting products demonstrated the expected molecular mass and nanomolar in vitro SSTR2 affinity (IC50 values under 30?nM, AR42J cells, [125I]iodo-Tyr11-somatostatin-14 radioligand standard). However, a difference in their HPLC retention times suggested a difference in metal coordination modes, which was attributed to a competing N-triazole donor ligand formed during click conjugation. Surprisingly, the radiotracer scale reaction of [99mTc][Tc(OH2)3(CO)3]+ (99mTc; t½?=?6?h, 141?keV γ) with 4 formed a third product, distinct from the Re analogues, making this one of the unusual cases in which Re and Tc chemistries are not well matched. Nevertheless, the [99mTc]Tc-4 product demonstrated excellent in vitro stability to challenges by cysteine and histidine (≥98% intact through 24?h), along with 75% stability in mouse serum through 4?h. In vivo biodistribution and microSPECT/CT imaging studies performed in AR42J tumor-bearing mice revealed improved clearance of this radiotracer in comparison to a similar [99mTc][Tc(CO)3]-labeled sst2-ANT derivative previously studied. Yet despite having adequate tumor uptake at 1?h (4.9% ID/g), tumor uptake was not blocked by co-administration of a receptor-saturating dose of SS-14. Aimed toward realignment of the Re and Tc product structures, future efforts should include distancing the alkyne group from the intended donor atoms of the chelator, to reduce the coordination options available to the [M(CO)3]+ core (M?=?Re, 99mTc) by disfavoring involvement of the N-triazole.  相似文献   

13.
Two somatostatin analogues, [99mTc]Demotide and [99mTc]Demotate 4, were compared with [99mTc]Demotate 1, a previously reported somatostatin receptor subtype 2 (sst2) targeting tracer. Conjugates were prepared by coupling an open‐chain tetraamine chelator to D ‐Phe1 of [Tyr3]‐octreotide or [Tyr3]‐octreotate, respectively, via a p‐benzylaminodiglycolic acid spacer adopting solid‐phase peptide synthesis techniques. Peptide conjugates were collected in a highly pure form after chromatographic purification. Eventually, [99mTc]Demotide and [99mTc]Demotate 4 were obtained in ~1 Ci/µmol specific activity and >96% purity after labeling under alkaline conditions. Demotide and Demotate 4 exhibited similar high binding affinities for the sst2 expressed in AR4‐2J cells with IC50 values 0.16 and 0.10 nM, respectively. The (radio)metallated analogues [99mTc]Demotide and [99mTc]Demotate 4 showed equally high affinities to the sst2 during saturation binding assays in AR4‐2J cell membranes (Kds 0.08 and 0.07 nM, respectively). During incubation at 37 °C with AR4‐2J cells, the radiopeptides internalized effectively via a receptor‐mediated process, with [99mTc]Demotate 4 exhibiting a faster internalization rate than [99mTc]Demotide. After injection in athymic mice bearing sst2‐expressing AR4‐2J tumors, the radiotracers showed high and specific uptake in the tumor (>25%ID/g at 1 h) and in the sst2–positive organs. However, both [99mTc]Demotide and [99mTc]Demotate 4 showed unfavorably higher background activity, especially in the abdomen, in comparison to [99mTc]Demotate 1 and are, therefore, less suited than [99mTc]Demotate 1 for sst2‐targeted tumor imaging in man. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Prostate specific membrane antigen (PSMA) is recognized as an attractive molecular target for the development of radiopharmaceuticals to image and potentially treat metastatic prostate cancer. A series of novel 99mTc/Re-tricarbonyl radiolabeled PSMA inhibitors were therefore synthesized by the attachment of glutamate-urea-lysine (Glu-urea-Lys) and glutamate-urea-glutamate (Glu-urea-Glu) pharmacophore to single amino acid chelate (SAAC) where the SAAC ligand was either bis(pyridin-2-ylmethyl)amino (DPA), bis((1-methyl-1H-imidazol-2-yl)methyl)amino (NMI), bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino (CIM) or bis((1-(2-(bis(carboxymethyl)amino)-2-oxoethyl)-1H-imidazol-2-yl)methyl)amino (TIM). The in vitro binding affinity of the rhenium complexes was evaluated using PSMA-expressing human prostate cancer LNCaP cells. IC50 values ranged from 3.8 ± 2 to >2000 nM. A linker between the SAAC chelate and pharmacophore was required for high affinity binding. However, extending the length of the linker did not substantially improve binding. PSMA binding was also influenced by the nature of the SAAC chelate. One of the most potent compounds, 23b (IC50 = 4.8 ± 2.7 nM), was radiolabeled with technetium tricarbonyl ({99mTc(CO)3}+) to afford the {99mTc(CO)3}+ complex in excellent yield and high purity. This effort has led to the identification of a diverse series of promising high affinity {99mTc(CO)3}+ radiolabeled PSMA inhibitors.  相似文献   

15.
A new method for labeling preformed liposomes with technetium-99m (99mTc) has been developed which is simple to perform and stable in vivo. Previous 99mTc-liposome labels have had variable labeling efficiencies and stability. This method consistently achieves high labeling efficiencies (> 90%) with excellent stability. A commercially available radiopharmaceutical kit—hexamethylpropyleneamine oxime (HM-PAO)—is reconstituted with 99mTcO4 and then incubated with preformed liposomes that encapsulate glutathione. The incubation takes only 30 min at room temperature. Liposomes that co-encapsulate other proteins such as hemoglobin or albumin, in addition to glutathione, also label with high efficiency. Both in vitro and in vivo studies indicate good stability of this label. Rabbit images show significant spleen and liver uptake at 2 and 20 h after liposome infusion without visualization of thyroid, stomach or bladder activity.This labeling method can be used to study the biodistribution of a wide variety of liposome preparations that are being tested as novel drug delivery systems. This method of labeling liposomes with 99mTc may also have applications in diagnostic imaging.  相似文献   

16.
Survivin, overexpressed in most cancers, is associated with poor prognosis and resistance to radiation therapy and chemotherapy. Herein, we report the synthesis of three 3-phenethyl-2-indolinone derivatives and their application as in vivo imaging agents for survivin. Of these, 3-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-3-hydroxy-5- iodoindolin-2-one (IPI-1) showed the highest binding affinity (Kd?=?68.3?nM) to recombinant human survivin, as determined by quartz crystal microbalance (QCM). In vitro studies demonstrated that the [125I]IPI-1 binding in survivin-positive MDA-MB-231 cells was significantly higher than that in survivin-negative MCF-10A cells. In addition, uptake of [125I]IPI-1 by MDA-MB-231 cells decreased in a dose-dependent manner in the presence of the high-affinity survivin ligand S12; this is indicative of specific binding of [125I]IPI-1 to cellular survivin protein in vitro. Biodistribution studies in MDA-MB-231 tumor-bearing mice demonstrated the moderate uptake of [125I]IPI-1 in the tumor tissue (1.37%?ID/g) at 30?min that decreased to 0.32%?ID/g at 180?min. Co-injection of S12 (2.5?mg/kg) slightly reduced tumor uptake and the tumor/muscle ratio of [125I]IPI-1. Although further structural modifications are necessary to improve pharmacokinetic properties, our results indicate that PI derivatives may be useful as tumor-imaging probes targeting survivin.  相似文献   

17.
The monoclonal antibody 50H.19 recognized three antigens (Mr = 31-, 40-, 45-K) on normal and thromboasthenic platelets, but only one (Mr = 31-K) on Bernard-Soulier platelets. The intact antibody and its F(ab′)2 fragments, had direct platelet-aggregating activity, and induced the platelet release reaction. The intact antibody potentiated platelet aggregation induced by platelet-activating factor or thrombin. Additions of indomethacin did not inhibit aggregation: addition of PGI2, or a calcium channel blocker completely inhibited aggregation. A reduced amount of platelet-aggregating activity was observed with antibody fragments prepared for labeling with 99mTc by pre-exposure to stannous ions, and herein used in biodistribution studies and elsewhere in thrombus imagining studies (J. Nucl. Med. 27: 1315; 1986). Antibody fragments radiolabeled with 99mTc bound to isolated platelets and to clots containing platelets.  相似文献   

18.
An improved method of direct labeling MAbs with 99mTc is described. Two murine monoclonal antibodies, designated Lym-1 and B72.3, have been successfully labeled with 99mTc in 0.1 M borate buffer at pH 9.3. The choice of buffer and pH was essential for obtaining a radiolabeling yield ⩾98%. In vitro studies demonstrated that the radiolabeled antibodies were stable and retained their immunoreactivity. Imaging and biodistribution studies using Raji and LS174T human tumor-bearing nude mice demonstrated a significant tumor uptake at 24-h post-injection of 99mTc-labeled MAbs. This improved labeling method showed better stability than those of previously published methods and resulted in significant improvement in the uptake of antibody in tumor. External images at 24 h post-injection revealed clearly visible tumors demonstrating the benefit of this method for tumor immunoscintigraphy.  相似文献   

19.
A triphenylphosphonium cation, [99mTc]Technetium cyclopentadienyltricarbonyl-6-hexanoyl-triphenylphosphonium cation ([99mTc]3) was prepared to target multidrug resistance (MDR). The radiotracer was evaluated in the MDR-negative MCF-7 and MDR-positive MCF-7/ADR cell lines in vitro, as well as animal models in vivo. [99mTc]3 was proofed to be a substrate of P-glycoprotein and multidrug resistant protein 1, and showed a higher accumulation in the MDR-negative MCF-7 cells compared to 99mTc-sestamibi in vitro. The MCF-7 tumor-to-MCF-7/ADR tumor ratio of [99mTc]3 was ~3 at 1 h p.i. in the biodistribution study. These results demonstrated the capability of the radiotracer to detect multidrug resistance in tumor cells.  相似文献   

20.
Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled α-melanocyte stimulating hormone (α-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized α-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of α-MSH (Ac-Nle-cyclo[Asp-His-dPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of α-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide βAla-Nle-cyclo[Asp-His-d-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog βAla-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of βAla, and the resulting pz–peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 °C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 ± 0.83 and 11.31 ± 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz–peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,dPhe7)-αMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号