首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的:探究YY肽(PYY)对雄性Wistar大鼠的摄食、胃运动和能量代谢的影响及潜在机制。方法:采用免疫组织化学实验方法观察大鼠下丘脑弓状核(ARC)中Y2受体的表达;通过ARC微量注射PYY,观察其对下丘脑中编码摄食相关代谢激素的m RNA表达以及ARC中PYY反应性神经元的放电频率、食物摄入量及水摄入量、氧气消耗(VO_2)、CO_2产生(VCO_2)及能量代谢的影响。结果:免疫组化结果显示大鼠ARC内存在Y2受体;大鼠ARC注射PYY能够兴奋PYY反应性神经元,上调可卡因-苯丙胺调节转录肽(CART)及促肾上腺皮质释放激素(CRH)等抑食肽m RNA的表达,下调神经肽Y(NPY)及下丘脑泌素(HCRT)等促食肽m RNA的表达;且抑制大鼠食物摄入量,并参与调控大鼠呼吸、能量代谢及胃运动的改变。结论:ARC微量注射PYY可减少食物摄入并调节全身能量平衡,PYY可能是一种新型代谢肽。  相似文献   

3.
Central injections of neuropeptide Y (NPY) increase food intake in Syrian hamsters; however, the effect of NPY on sexual behavior in hamsters is not known nor are the receptor subtypes involved in feeding and sexual behaviors. We demonstrate that NPY inhibits lordosis duration in a dose-related fashion after lateral ventricular injection in ovariectomized, steroid-primed Syrian hamsters. Under the same conditions, we compared the effect of two receptor-differentiating agonists derived from peptide YY (PYY), PYY-(3-36) and [Leu(31),Pro(34)]PYY, on lordosis duration and food intake. PYY-(3-36) produced a 91% reduction in lordosis duration at 0.24 nmol. [Leu(31),Pro(34)]PYY was less potent, producing a reduction in lordosis duration (66%) only at 2.4 nmol. These results suggest NPY effects on estrous behavior are principally mediated by Y2 receptors. PYY-(3-36) and [Leu(31),Pro(34)]PYY stimulated comparable dose-related increases in total food intake (2 h), suggesting Y5 receptors are involved in feeding. The significance of different NPY receptor subtypes controlling estrous and feeding behavior is highlighted by results on expression of Fos immunoreactivity (Fos-IR) elicited by either PYY-(3-36) or [Leu(31),Pro(34)]PYY at a dose of each that differentiated between the two behaviors. Some differences were seen in the distribution of Fos-IR produced by the two peptides. Overall, however, the patterns of expression were similar. Our behavioral and anatomic results suggest that NPY-containing pathways controlling estrous and feeding behavior innervate similar nuclei, with the divergence in pathways controlling the separate behaviors characterized by linkage to different NPY receptor subtypes.  相似文献   

4.
It has recently been suggested that gut-derived PYY(3-36) may be involved in the central mediation of post-prandial satiety signals. We have examined the acute effects of peripherally administered PYY(3-36) on food intake and hypothalamic gene expression of neuropeptides in mice. A single intraperitoneal injection of PYY(3-36) to mice that had been fasted for 24h resulted in a highly significant reduction in food intake at 6 and 24h post-injection but not at 48h. However, in freely fed mice, food intake was unaltered by PYY(3-36) administration. In the arcuate nucleus POMC mRNA expression was significantly elevated at 6h and remained elevated at 24h following PYY(3-36) injection. By contrast NPY mRNA expression in the arcuate nucleus was suppressed at 6h but not at 24h post-injection. In the lateral hypothalamus there were no differences in MCH mRNA expression at either time point. In conclusion, peripherally administered PYY(3-36) has a suppressive effect on food intake that is more prominent in recently fasted mice and lasts up to 24 h. This is associated with a short-lived suppression of NPY mRNA, a longer lasting increase in POMC mRNA but no change in MCH mRNA expression.  相似文献   

5.
Apelin is a peptide, mainly produced in the brain, which participates in several physiologic effects. However, knowledge about the mechanism of appetite regulation in teleosts, including the role of apelin is not well understood. The aim of this study is to explore the effect of feeding status on the expression of apelin mRNA in the whole brain and the effects of injection of apelin on food intake in Siberian sturgeon (Acipenser baerii). In this study, we first cloned the apelin cDNA sequence of the Siberian sturgeon. We obtained a 1046-bp cDNA fragment, including a 237-bp open reading frame (ORF) that encoded 78 amino acids. Apelin was widely distributed in 11 tissues related to feeding regulation, with the highest expression in thewhole brain, followed by the spleen and trunk kidney. In addition, we measured the effects of periprandial (preprandial and postprandial) change, fasting and re-feeding on apelin mRNA expression in whole brain. The level of apelin mRNA was significantly decreased 1 h after feeding. The results of the fasting experiment showed that the expression of apelin mRNA in the brain was significantly reduced after 1 day of fasting but consistently increased throughout the 15-day food deprivation period. When the 15-day fasted fish were re-fed, apelin mRNA expression in the brain was significantly increased as compared to that of the control. These results suggest that apelin may play a bidirectional role in the regulation of food intake in the Siberian sturgeon. In order to further examine the effect of apelin on feeding regulation in Siberian sturgeons, acute and chronic intraperitoneal (i.p.) injection experiments were performed and food intakes were recorded. Results showed that acute i.p. injection of apelin-13 reduced food intake, however, chronic i.p. injection apelin-13 increased the food intake for 7 days in Siberian sturgeons. In conclusion, our results show that apelin has a bidirectional effect on feeding regulation in Siberian sturgeons by acting as a satiety factor in short-term feeding regulation and a starvation factor in long-term feeding regulation.  相似文献   

6.
Yan A  Zhang L  Tang Z  Zhang Y  Qin C  Li B  Li W  Lin H 《Peptides》2011,32(7):1363-1370
Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4 h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro.  相似文献   

7.
Neuropeptide Y (NPY) is considered the major stimulant for food intake in mammals and fish. Previous results indicate that NPY is involved in the feeding behaviour of the Brazilian flounder, Paralichthys orbignyanus. In this study, we evaluated hypothalamic NPY expression before (-2 h), during (0 h) and after feeding (+2 h) in two independent experiments: (1) during a normal feeding schedule and (2) in fish fasted for 2 weeks. During normal feeding, changes in the levels of NPY mRNA were periprandial, with expression levels being significantly elevated at meal time (P less than 0.05) and significantly reduced 2 h later (P less than 0.05). Comparing the fasting and unfasted groups, NPY mRNA levels were significantly higher (P less than 0.05) at -2 h and +2 h in the fasting group, but there was no difference at 0 h. In addition, the higher NPY mRNA levels that were observed in the fasting group were maintained throughout the sampling period. In summary, our results show that NPY expression was associated with meal time (0 h) in food intake regulation.  相似文献   

8.
Activation of the NPY2 receptor to reduce appetite while avoiding activation of the NPY1 and NPY5 receptors that stimulate feeding provides a pharmaceutical approach to modulate food intake. The naturally occurring peptide and development candidate PYY(3-36) is a non-selective NPY1, NPY2, and NPY5 agonist of limited in vivo duration of action. N-terminal modification with 20 kDa PEG of a selective NPY2 receptor agonist peptide results in a long-acting agent that outperforms PYY(3-36) in reducing food intake in mice. The results suggest that PEGylated, selective NPY2 peptide agonists offer a significantly improved therapeutic benefit over PYY(3-36) for obesity management.  相似文献   

9.
We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.  相似文献   

10.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

11.
12.
Corp ES  McQuade J  Krasnicki S  Conze DB 《Peptides》2001,22(3):493-499
Neuropeptide Y (NPY) and peptide YY (PYY) stimulate food intake after injection into the fourth cerebral ventricle, suggesting that NPY receptors in the hindbrain are targets for the stimulatory effect of these peptides on food intake. However, the NPY/PYY receptor subtype mediating the feeding response in the hindbrain is not known. To approach to this question we compared dose-effect of several NPY receptor agonists to stimulate food intake in freely-feeding rats 60- and 120-min after injection into the fourth cerebral ventricle. At the 120-min time point, PYY was 2- to 10-times as potent as NPY over the dose-response range and stimulated twice the total intake at the maximally effective dose (2-fold greater efficacy). NPY was 2-times as potent as the Y1, Y5 receptor agonist, [Leu(31)Pro(34)]NPY but acted with comparable efficacy. The Y5-, Y2-differentiating receptor agonist, NPY 2-36, was comparable in potency to PYY at low doses but equal in efficacy NPY and [Leu(31)Pro(34)]NPY. The Y2 receptor agonist, NPY 13-36, produced only a marginal effect on total food intake. The profile of agonist potency after fourth cerebral ventricle administration is similar to the profile obtained when these or related agonists are injected in the region of the hypothalamus. Agonists at both Y1 and Y5 receptors stimulated food intake with a rank order of potency that does not conclusively favor the exclusive involvement of a single known NPY receptor subtype. Thus it is possible that the ingestive effects of NPY and PYY are mediated by multiple or novel receptor subtypes in the hindbrain. And the relatively greater potency and efficacy of PYY raises the possibility that a novel PYY-preferring receptor in the hindbrain is involved in the stimulation of food intake.  相似文献   

13.
We previously found that daidzein decreased food intake in female rats. The present study aimed to elucidate the relationship between dynamics of appetite-mediated neuropeptides and the anorectic effect of daidzein. We examined appetite-mediated gene expression in the hypothalamus and small intestine during the 3 meals per day feeding method. Daidzein had an anorectic effect specifically at the second feeding. Neuropeptide-Y (NPY) and galanin mRNA levels in the hypothalamus were significantly higher after feeding in the control but not in the daidzein group, suggesting that daidzein attenuated the postprandial increase in NPY and galanin expression. The daidzein group had higher corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamus after feeding, and increased cholelcystokinin (CCK) mRNA levels in the small intestine, suggesting that CCK is involved in the hypothalamic regulation of this anorectic effect. Therefore, daidzein may induce anorexia by suppressing expression of NPY and galanin and increasing expression of CRH in the hypothalamus.  相似文献   

14.
Neuropeptide Y (NPY) injected into the paraventricular nucleus (PVN) is known to elicit a powerful feeding response in satiated, brain-cannulated rats [41, 42, 43]. The present experiment investigates the effect of peptide YY (PYY), a structurally-related peptide, on feeding behavior and, in addition, the effects of both PYY and NPY on the pattern of macronutrient selection. Injection of PYY directly into the PVN, in doses ranging from 7.8 to 235 pmol/0.3 μl, caused a strong, dose-dependent stimulation of feeding behavior, as well as a small stimulation of drinking behavior, in satiated rats. The mean latency to eat was 9.3 min, with substantial feeding occurring within 30 min of the injection. At low doses, the increase in feeding was seen predominantly during the first hr. At the highest dose, in contrast, food intake continued to increase progressively over the next few hr, such that by 4 hr postinjection food intake was more than 20 g over vehicle baseline. In 1 hr tests with 3 pure macronutrient (protein, fat and carbohydrate) diets simulataneously available, PYY and NPY (78 pmol/0.3 μl) both elicited a strong and selective increase in carbohydrate consumption, with little or no effect on protein or fat consumption. These results suggest that hypothalamic receptors sensitive to PYY and NPY may participate in the control of carbohydrate consumption.  相似文献   

15.
Regulation of food intake by neuropeptide Y in goldfish   总被引:1,自引:0,他引:1  
In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.  相似文献   

16.
Porcine neuropeptide Y (pNPY) administered into the third ventricle of the brain is known to elicit a powerful feeding response in steroid-treated ovariectomized and intact male rats. The present study compared the effects of pNPY and 3 structurally related peptides, human NPY (hNPY), an analog of NPY (NPY-A, [norLeu4]NPY) and peptide YY (PYY) on feeding behavior in intact female rats. Intraventricular administration of pNPY, hNPY, NPY-A and PYY over a dose range of 0.5 to 10 micrograms evoked feeding behavior to a varying extent. Cumulative food intake during 60 and 120 min was increased in a dose-related fashion at 0.5 and 2.0 microgram for the 4 peptides. Whereas the 10-micrograms dose of pNPY evoked a feeding response smaller than that seen after 2 micrograms, the responses to either 10 micrograms hNPY or 10 micrograms PYY were similar to that seen after 2 micrograms. The effects of these peptides on the time spent eating were quite different: while pNPY increased the time spent eating, this effect was not dose-related, whereas hNPY, NPY-A and PYY produced dose-related increments in the time spent eating. The most dramatic increment in local eating rate was observed after 2.0 micrograms pNPY, with lesser increments seen after 2.0 microgram hNPY and NPY-A. This increased local eating was apparently responsible for the highest cumulative food intake observed. These results demonstrate that (a) 2 micrograms pNPY is equally effective in stimulating feeding behavior in intact female rats as it is in steroid-primed ovariectomized female and intact male rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The neuropeptide Y-family peptides and receptors are involved in a broad range of functions including appetite regulation. Both the peptide genes and the receptor genes are known to have duplicated in early vertebrate evolution. The ancestral jawed vertebrate had 7 NPY receptors but the number varies between 4 and 7 in extant vertebrates. Herein we describe the identification of an additional NPY receptor in two fish species, zebrafish and medaka. They cluster together with the Y2 receptors in phylogenetic analyses and seem to be orthologous to each other that is why we have named them Y2-2. Their genes differ from Y2 in having introns in the coding region. Binding studies with zebrafish Y2-2 receptors show that the three endogenous peptides NPY, PYYa and PYYb have similar affinities, 0.15–0.66 nM. This is in contrast to the Y2 receptor where they differed considerably from one another. N-terminally truncated NPY binds poorly and the Y2 antagonist BIIE0246 binds well to Y2-2, results that are reversed in comparison to Y2. Zebrafish Y2-2 mRNA was detected by PCR in the intestine and the eye, but not in the brain. In conclusion, we have found a novel Y2-like NPY/PYY receptor that probably arose in early teleost fish evolution.  相似文献   

18.
Neuropeptide Y (NPY) and peptide YY (PYY) were injected intracerebroventricularly (ICV) in broiler chicks. Both NPY and PYY markedly increased food intake during the first hour post-injection compared to saline (SAL) controls. Food intake doubled in chicks given 5 micrograms NPY. A response surface analysis suggested that following ICV injection of NPY, maximum food intake occurred, using a dose of 9 micrograms. In contrast, an estimated dose between one and 5 micrograms PYY resulted in maximum food intake, giving the latter a slightly higher potency. Time spent drinking was not significantly different among NPY, PYY and SAL groups. Chicks given NPY or PYY also spent significantly less time standing while those given PYY spent significantly less time preening compared to controls.  相似文献   

19.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

20.
Orexigenic neuropeptides NPY and AgRP play major roles in feeding and are closely related to obesity and diabetic metabolic syndrome. This study explored the inhibitory effect of rutecarpine on feeding and obesity in high-fat-diet-induced (C57BL/6) and leptin-deficient (ob/ob) obese mice. Both mice strains developed obesity, but the obesity was inhibited by the reduced food intake resulting from rutecarpine treatment (0.01%, < 0.01). Blood cholesterol, non-fasting glucose, insulin, and leptin levels were reduced, compared with the control group. Rutecarpine inhibited the expression of NPY and AgRP in the arcuate nucleus (ARC) of the hypothalamus and suppressed the expression of both neuropeptides in N29-4 neuronal cells. These results indicate that rutecarpine ameliorates obesity by inhibiting food intake, which involves inhibited expression of the orexigenic neuropeptides NPY and AgRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号