首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60–110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N′-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60–110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys77–Cys109 bond, followed by iodine oxidation to form the Cys67–Cys99 bond.  相似文献   

2.
The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood–brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.  相似文献   

3.
Compromised blood–brain barrier permeability resulting from systemic inflammation has been implicated as a possible cause of brain damage in fetuses and newborns and may underlie white matter damage later in life. Rats at postnatal day (P) 0, P8 and P20 and opossums (Monodelphis domestica) at P15, P20, P35, P50 and P60 and adults of both species were injected intraperitoneally with 0.2–10 mg/kg body weight of 055:B5 lipopolysaccharide. An acute-phase response occurred in all animals. A change in the permeability of the blood–brain barrier to plasma proteins during a restricted period of postnatal development in both species was determined immunocytochemically by the presence of proteins surrounding cerebral blood vessels and in brain parenchyma. Blood vessels in white matter, but not grey matter, became transiently permeable to proteins between 10 and 24 h after lipopolysaccharide injection in P0 and P8 rats and P35–P60 opossums. Brains of Monodelphis younger than P35, rats older than P20 and adults of both species were not affected. Permeability of the blood–cerebrospinal fluid (CSF) barrier to proteins was not affected by systemic inflammation for at least 48 h after intraperitoneal injection of lipopolysaccharide. These results show that there is a restricted period in brain development when the blood–brain barrier, but not the blood–CSF barrier, to proteins is susceptible to systemic inflammation; this does not appear to be attributable to barrier immaturity but to its stage of development and only occurs in white matter.This work was supported by NIH grant number R01 NS043949-01A1.  相似文献   

4.
Literature and own data on central effects of regulatory peptides (155 substances from 32 families) have been analyzed. Peptides produced by peripheral tissues affect the brain through the almost impermeable for them blood–brain barrier and evoke numerous central effects. The mechanisms of this impact are as follows: peptides bind to specific receptors located on vagal afferent terminals and in the circumventricular organs as well as (to a lesser extent) penetrate into the brain with the aid of specific transport systems or by simple diffusion. The number of these trans-barrier communications depends on the evolutionary age of the regulated physiological function: the more ancient the function is, the greater number of peripheral peptides are involved in such trans-barrier communications.  相似文献   

5.
6.
N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe)4-CONH2, was more lipophilic than its non-methylated analog Ac-(Phe)4-CONH2. In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe)4-CONH2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood–brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.  相似文献   

7.
8.
5-Hydroxytryptamine (5-HT) was originally discovered as a vasoconstrictor. 5-HT lowers blood pressure when administered peripherally to both normotensive and hypertensive male rats. Because the serotonin transporter (SERT) can function bidirectionally, we must consider whether 5-HT can be transported from the bloodstream to the central nervous system (CNS) in facilitating the fall in blood pressure. The blood–brain barrier (BBB) is a highly selective barrier that restricts movement of substances from the bloodstream to the CNS and vice versa, but the rat BBB has not been investigated in terms of SERT expression. This requires us to determine whether the BBB of the rat, the species in which we first observed a fall in blood pressure to infused 5-HT, expresses SERT. We hypothesized that SERT is present in the BBB of the male rat. To test this hypothesis, over 500 blood vessels were sampled from coronal slices of six male rat brains. Immunofluorescence of these coronal slices was used to determine whether SERT and RecA-1 (an endothelial cell marker) colocalized to the BBB. Blood vessels were considered to be capillaries if they were between 1.5 and 23 µm (intraluminal diameter). SERT was identified in the largest pial vessels of the BBB (mean ± SEM = 228.70 ± 18.71 µm, N = 9) and the smallest capillaries (mean ± SEM = 2.75 ± 0.12 µm, N = 369). SERT was not identified in the endothelium of blood vessels ranging from 20 to 135 µm (N = 45). The expression of SERT in the rat BBB means that 5-HT entry into the CNS must be considered a potential mechanism when investigating 5-HT-induced fall in blood pressure.  相似文献   

9.
Altered brain cholesterol homeostasis plays a key role in neurodegenerative diseases such as Alzheimer’s disease (AD). For a long time, the blood–brain barrier (BBB) was basically considered as a barrier isolating the brain from circulating cholesterol, however, several lines of evidence now suggest that the BBB strictly regulates the exchanges of sterol between the brain and the peripheral circulation. Oxysterols, synthesized by neurons or by peripheral cells, cross the BBB easily and modulate the expression of several enzymes, receptors and transporters which are involved not only in cholesterol metabolism but also in other brain functions. This review article deals with the way oxysterols impact BBB cells. These perspectives open new routes for designing certain therapeutical approaches that target the BBB so that the onset and/or progression of brain diseases such as AD may be modulated.  相似文献   

10.
The blood–brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β?catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.  相似文献   

11.
Alpha-synuclein (α-Syn), a small protein with multiple physiological and pathological functions, is one of the dominant proteins found in Lewy Bodies, a pathological hallmark of Lewy body disorders, including Parkinson's disease (PD). More recently, α-Syn has been found in body fluids, including blood and cerebrospinal fluid, and is likely produced by both peripheral tissues and the central nervous system. Exchange of α-Syn between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications. However, little is known about the ability of α-Syn to cross the blood–brain barrier (BBB). Here, we found that radioactively labeled α-Syn crossed the BBB in both the brain-to-blood and the blood-to-brain directions at rates consistent with saturable mechanisms. Low-density lipoprotein receptor-related protein-1 (LRP-1), but not p-glycoprotein, may be involved in α-Syn efflux and lipopolysaccharide (LPS)-induced inflammation could increase α-Syn uptake by the brain by disrupting the BBB.  相似文献   

12.
The number of disease models that involve an aspect of blood–brain barrier (BBB) dysregulation have increased tremendously. The main factors contributing to this expansion have been an increased number of diseases in which the BBB is known to be involved, an increase in the known functions of the BBB, and an increase in the number of models and tools with which those diverse functions can be studied. In many cases, the BBB may be a target of disease; current thinking would include hypertensive encephalopathy and perhaps stroke in this category. Another category are those diseases in which special attributes of the BBB may predispose to disease; for example, the ability of a pathogen to cross the BBB often depends on the pathogen's ability to invoke transcytotic pathways in the brain endothelial or choroid plexus cell. Of special interest are those diseases in which the BBB may be the primary seat of disease or play a major role in the onset or progression of the disease. An increasing number of diseases are so categorized in which BBB dysfunction or dysregulation plays a major role; this review highlights such roles for the BBB including those proposed for Alzheimer's disease and obesity.  相似文献   

13.
14.

Aims

In this report, the transport of ginkgolides with different lipophilicities was investigated using an hCMEC/D3 cell monolayer as a blood–brain barrier (BBB) cell model in vitro in an attempt to explain ginkgolide transport path mediated by lipophilicity.

Main methods

The log P values of ginkgolides were determined by measuring the distribution of the molecule between oil and water. Additionally, the cytotoxicity of ginkgolides on hCMEC/D3 cells was assayed with the MTT method. Ginkgolide contents were determined with an ultra performance liquid chromatograph equipped with an evaporative light scattering detector (ULPC–ELSD) method. Apparent permeability coefficients (Papp) and efflux ratios (PappBL → AP/PappAP → BL) were then calculated to describe the transport characteristics of ginkgolide.

Key findings

The transport of ginkgolide A, ginkgolide B, ginkgolide C, and ginkgolide J across the hCMEC/D3 cell monolayer was non-directional. Additionally, ginkgolide C transport on the cell monolayer was time- and concentration-dependent in the paracellular pathway controlled by cytochalasin D (a tight junction modulator). The transport of ginkgolide N, ginkgolide L, and ginkgolide K across the cell monolayer displayed clear directionality at low ginkgolide concentrations. This behavior indicated that the transport of ginkgolide N, ginkgolide L, and ginkgolide K was influenced by the transcellular pathway containing an efflux protein accompanied by the paracellular pathway for passive diffusion. Additionally, the transport of ginkgolide K was increased significantly by co-culturing with a P-gp inhibitor.

Significance

These findings provide important information for elucidating ginkgolide transport pathways and may be beneficial for the design of ginkgolide molecules with high neuroprotective effects.  相似文献   

15.
Amyloid-β (Aβ) peptide is central to the development of brain pathology in Alzheimer disease (AD) patients. Association with receptors for advanced glycation end-products (RAGE) enables the transport of Aβ peptide from circulating blood to human brain, and also causes the activation of the NF-κB signaling pathway. Here we show that two β-strands of RAGE participate in the interaction with Aβ peptide. Serial deletion analysis of the RAGE V domain indicates that the third and eighth β-strands are required for interaction with Aβ peptide. Site-directed mutagenesis of amino acids located in the third and eighth β-strands abolish the interaction of RAGE with Aβ peptide. Wild-type RAGE activates the NF-κB signaling pathway in response to Aβ peptide treatment, while a RAGE mutant defective in Aβ binding does not. Furthermore, use of peptide for the third β-strand or a RAGE monoclonal antibody that targets the RAGE–Aβ interaction interface inhibited transport of the Aβ peptide across the blood brain barrier in a mice model. These results provide information crucial to the development of RAGE-derived therapeutic reagents for Alzheimer disease.  相似文献   

16.
17.
Sun  Xia  Yin  YueHao  Kong  Lingchao  Chen  Wei  Miao  Changhong  Chen  Jiawei 《Molecular and cellular biochemistry》2019,456(1-2):85-93
Molecular and Cellular Biochemistry - Chymases, a family of serine proteases with chymotryptic activity, play a significant role in cardiac angiotensin II (Ang II) formation from its substrate...  相似文献   

18.
Nicotine is the most potent neural pharmacological alkaloid in tobacco, and the modulation of nicotine concentration in the brain is important for smoking cessation therapy. The purpose of this study was to elucidate the net flux of nicotine transport across the blood–brain barrier (BBB) and the major contributor to nicotine transport in the BBB. The in vivo brain-to-blood clearance was determined by a combination of the rat brain efflux index method and a rat brain slice uptake study, and the blood-to-brain transport of nicotine was evaluated by in vivo vascular injection in rats and a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13 cells) as an in vitro model of the rat BBB. The blood-to-brain nicotine influx clearance was obtained by integration plot analysis as 272 μL/(min g brain), and this value was twofold greater than the brain-to-blood efflux clearance (137 μL/(min g brain)). Thus, it is suggested that the net flux of nicotine transport across the BBB is dominated by blood-to-brain influx transport. In vivo blood-to-brain nicotine transport was inhibited by pyrilamine. [3H]Nicotine uptake by TR-BBB13 cells exhibited time-, temperature-, and concentration-dependence with a Km value of 92 μM. Pyrilamine competitively inhibited nicotine uptake by TR-BBB13 cells with a Ki value of 15 μM, whereas substrates and inhibitors of organic cation transporters had little effect. These results suggest that pyrilamine-sensitive organic cation transport process(es) mediate blood-to-brain influx transport of nicotine at the BBB, and this is expected to play an important role in regulating nicotine-induced neural responses.  相似文献   

19.
Dynorphin A 1–17 (Dyn A 1–17) is an endogenous neuropeptide known to act at the kappa opioid receptor; it has been implicated in a number of neurological disorders, including neuropathic pain, stress, depression, and Alzheimer's and Parkinson's diseases. The investigation of Dyn A 1–17 metabolism at the blood–brain barrier (BBB) is important since the metabolites exhibit unique biological functions compared to the parent compound. In this work, Dyn A 1–6 is identified as a metabolite of Dyn A 1–17 in the presence of bovine brain microvessel endhothelial cells (BBMECs), using LC–MS/MS. The transport of Dyn A 1–6 at the BBB was examined using this in vitro cell culture model of the BBB. Furthermore, the permeation of the BBB by the low molecular weight permeability marker fluorescein was characterized in the presence and absences of Dyn A 1–6.  相似文献   

20.
The blood–brain barrier (BBB) is a term used to describe the unique properties of central nervous system (CNS) blood vessels. One important BBB property is the formation of a paracellular barrier made by tight junctions (TJs) between CNS endothelial cells (ECs). Here, we show that Lipolysis-stimulated lipoprotein receptor (LSR), a component of paracellular junctions at points in which three cell membranes meet, is greatly enriched in CNS ECs compared with ECs in other nonneural tissues. We demonstrate that LSR is specifically expressed at tricellular junctions and that its expression correlates with the onset of BBB formation during embryogenesis. We further demonstrate that the BBB does not seal during embryogenesis in Lsr knockout mice with a leakage to small molecules. Finally, in mouse models in which BBB was disrupted, including an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and a middle cerebral artery occlusion (MCAO) model of stroke, LSR was down-regulated, linking loss of LSR and pathological BBB leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号