首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using electron microscopy demonstrated that killerFLIP-E triggers cell death accompanied by rapid (within minutes) plasma membrane permeabilization. Studies of the structure of the active core of killerFLIP (-E) indicated that it possesses amphiphilic properties and self-assembles into micellar structures in aqueous solution. The biochemical properties of killerFLIP are comparable to those of cationic lytic peptides, which participate in defense against pathogens and have also demonstrated anticancer properties. We show that the pro-cell death effects of killerFLIP are independent of its sequence similarity with c-FLIPL as killerFLIP-induced cell death was largely apoptosis and necroptosis independent. A killerFLIP-E variant containing a scrambled c-FLIPL motif indeed induced similar cell death, suggesting the importance of the c-FLIPL residues but not of their sequence. Thus, we report the discovery of a promising synthetic peptide with novel anticancer activity in vitro and in vivo.  相似文献   

2.
The Pro-His-Ser-Arg-Asn (PHSRN) sequence in fibronectin is a second cell-binding site that synergistically affects with Arg-Gly-Asp. The PHSRN peptide also induces cell invasion and accelerates wound healing. Here, we examined the sequence specificity of PHSRN on corneal epithelial migration using various synthetic peptides. Elongation and deletion analyses of Ac-PHSRN-NH2 suggest that the five amino acid length was a minimum and essential sequence for promotion of rabbit corneal epithelial migration ex vivo. Additionally, alanine substituted analysis indicated that the Ser- and Arg-residues are critical for the biological activities. The Ser-Arg motif is involved in various biologically active peptides, suggesting that the unique sequence interacts with cellular receptor(s) and regulates biological functions. Further, the N-acetyl and C-amide of Ac-PHSRN-NH2 contributed effectively for the chemical stability in tears. The Ac-PHSRN-NH2 peptide has potential to use as a therapeutic reagent especially for corneal wound healing.  相似文献   

3.
BackgroundBacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm.MethodsAntimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure.ResultsSignal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide.ConclusionThe strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents.General significanceThe process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.  相似文献   

4.
Semen-derived enhancer of viral infection (SEVI), an amyloid fibril formed from a cationic peptide fragment of prostatic acidic phosphatase (PAP), dramatically enhances the infectivity of human immunodeficiency virus type 1 (HIV-1). Insoluble, sedimentable fibrils contribute to SEVI-mediated enhancement of virus infection. However, the SEVI-forming PAP(248–286) peptide is able to produce infection-enhancing structures much more quickly than it forms amyloid fibrils. This suggests that soluble supramolecular assemblies may enhance HIV-1 infection. To address this question, non-SEVI amyloid-like fibrils were derived from general amphipathic peptides of sequence Ac-Kn(XKXE)2-NH2. These cationic peptides efficiently self-assembled to form soluble, fibril-like structures that were, in some cases, able to enhance HIV-1 infection even more efficiently than SEVI. Experiments were also performed to determine whether agents that efficiently shield the charged surface of SEVI fibrils block SEVI-mediated infection-enhancement. To do this, we generated self-assembling anionic peptides of sequence Ac-En(XKXE)2-NH2. One of these peptides completely abrogated SEVI-mediated enhancement of HIV-1 infection, without altering HIV-1 infectivity in the absence of SEVI. Collectively, these data suggest that soluble SEVI assemblies may mediate infection-enhancement, and that anionic peptide supramolecular assemblies have the potential to act as anti-SEVI microbicides.  相似文献   

5.
By using an amyloid sequence pattern, here we have identified putative six-residue amyloidogenic stretches in several relevant amyloid proteins. Hexapeptides synthesized on the bases of the sequence stretches matching the pattern have been shown to form amyloid fibrils in vitro. As larger pathological peptides such as Aβ1-42 do, these short amyloid peptides form heterogeneous mixtures of small aggregates that induce cell death in PC12 cells and primary hippocampal neurons. Toxic mixtures of small aggregates from these hexapeptides bind to cell membranes and can be further internalized, as also observed for natural amyloid proteins. In neurons, toxic aggregates obtained from the full length Aβ1-42 amyloid peptide or their amyloid stretch Aβ16-21 peptide preferentially localize in synapses, leading to the re-organization of the underlying actin cytoskeleton. This process does not involve stereospecific interactions between membrane and toxic species as D-sequences are as toxic as L ones, suggesting that is not receptor mediated. Based on these results, we propose here that regardless of polypeptide sequence, length and amino acid chirality, amyloid prefibrillar aggregates exert their cytotoxic effect through a common cell death mechanism related to a particular quaternary structure. The degree of toxicity of these species seems to depend, however, on cell membrane composition.  相似文献   

6.
Sattin A  Pekary AE  Blood J 《Peptides》2011,32(8):1666-1676
Hyperresponsiveness to norepinephrine contributes to post-traumatic stress disorder (PTSD). Prazosin, a brain-active blocker of α1-adrenoceptors, originally used for the treatment of hypertension, has been reported to alleviate trauma nightmares, sleep disturbance and improve global clinical status in war veterans with PTSD. Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) may play a role in the pathophysiology and treatment of neuropsychiatric disorders such as major depression, and PTSD (an anxiety disorder). To investigate whether TRH or TRH-like peptides (pGlu-X-Pro-NH2, where “X” can be any amino acid residue) participate in the therapeutic effects of prazosin, male rats were injected with prazosin and these peptides then measured in brain and endocrine tissues. Prazosin stimulated TRH and TRH-like peptide release in those tissues with high α1-adrenoceptor levels suggesting that these peptides may play a role in the therapeutic effects of prazosin.  相似文献   

7.
Cyclic peptides are an attractive modality for the development of therapeutics and the identification of functional cyclic peptides that contribute to novel drug development. The peptide array is one of the optimization methods for peptide sequences and also useful to understand sequence–function relationship of peptides. Cell adherent cyclic NGR peptide which selectively binds to the aminopeptidase N (APN or CD13) is known as an attractive tumor marker. In this study, we designed and screened a library of different length and an amino acid substitution library to identify stronger cell adhesion peptides and to reveal that the factor of higher binding between CD13 and optimized cyclic peptides. Additionally, we designed and evaluated 192 peptide libraries using eight representative amino acids to reduce the size of the library. Through these optimization steps of cyclic peptides, we identified 23 peptides that showed significantly higher cell adhesion activity than cKCNGRC, which was previously reported as a cell adhesion cyclic peptide. Among them, cCRHNGRARC showed the highest activity, that is, 1.65 times higher activity than cKCNGRC. An analysis of sequence and functional data showed that the rules which show higher cell adhesion activity for the three basic cyclic peptides (cCX1HNGRHX2C, cCX1HNGRAX2C, and cCX1ANGRHX2C) are related with the position of His residues and cationic amino acids.  相似文献   

8.
Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.  相似文献   

9.
Globally, death due to cancers is likely to rise to over 20 million by 2030, which has created an urgent need for novel approaches to anticancer therapies such as the development of host defence peptides. Cn‐AMP2 (TESYFVFSVGM), an anionic host defence peptide from green coconut water of the plant Cocos nucifera, showed anti‐proliferative activity against the 1321N1 and U87MG human glioma cell lines with IC50 values of 1.25 and 1.85 mM, respectively. The membrane interactive form of the peptide was found to be an extended conformation, which primarily included β‐type structures (levels > 45%) and random coil architecture (levels > 45%). On the basis of these and other data, it is suggested that the short anionic N‐terminal sequence (TES) of Cn‐AMP2 interacts with positively charged moieties in the cancer cell membrane. Concomitantly, the long hydrophobic C‐terminal sequence (YFVFSVGM) of the peptide penetrates the membrane core region, thereby driving the translocation of Cn‐AMP2 across the cancer cell membrane to attack intracellular targets and induce anti‐proliferative mechanisms. This work is the first to demonstrate that anionic host defence peptides have activity against human glioblastoma, which potentially provides an untapped source of lead compounds for development as novel agents in the treatment of these and other cancers. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.  相似文献   

11.
Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa‐arginine (R8) and CHK6HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep‐3, flanked with CH3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide–plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non‐covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide–plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Rapid inactivation of voltage-gated K+ (KV) channels is mediated by an N-terminal domain (inactivating ball domain) which blocks the open channel from the cytoplasmic side. Inactivating ball domains of various KV channels are also biologically active when synthesized separately and added as a peptide to the solution. Synthetic inactivating ball domains from different KV channels with hardly any sequence homology mediate quite similar effects even on unrelated KV channel subtypes whose inactivation domain has been deleted. The solution structure of the inactivating ball peptide from Shaker (Sh-P22) was analyzed with NMR spectroscopy. The NMR data indicate a non-random structure in an aqueous environment. However, while other inactivating ball peptides showed well-defined three-dimensional structures under these conditions, Sh-P22 does not have a unique, compactly folded structure in solution.  相似文献   

13.
The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH4. On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields.  相似文献   

14.
Metal centers have been widely used to nucleate secondary structures in linear peptides. However, very few examples have been reported for peptide/organometal complexes. Here, we illustrate the use of organotin compounds as nucleation centers for secondary structures of linear peptide inhibitors of ??-amylase. Specifically, we utilized methyl-substituted tin compounds to template short type I ??-turns similar to the binding loop of tendamistat, the natural inhibitor of the enzyme, which are able to bind and inhibit ??-amylase. We show that enzyme activity is inhibited by neither the unstructured peptide nor the organotin compounds, but rather the peptide/organotin complex, which inhibits the enzyme with K i?~?0.5???M. The results delineate a strategy to use organometallic compounds to drive the active conformation in small linear peptides.  相似文献   

15.
16.
The widely observed phenomenon that peptides are capable of adopting multiple conformations in different environments suggests that secondary structure formation in a peptide segment is a process involving not only the peptide itself hut also the surrounding solvent media. The influence of the primary sequence and the molecular environment on peptide conformations are now investigated using synthetic peptides of amino acid sequence H2N-(Ser-Lys)2-Ala-X-Gly-Ala-X-Gly-Trp-Ala-X-Gly-(Lys-Ser)3-OH, where X = Ile or Val. These two peptides, namely 3I (X = Ile) and 3V (X = Val), are found to lack defined secondary structure in aqueous buffer. However, discrete conformational states, e.g., α-helices and β-sheets, are readily generated and interconverted for both peptides when the buffer is modulated with the addition of methanol, sodium dodecyl sulfate (SDS) micelles, or phospholipid vesicles. The role of the primary sequence in affecting peptide conformations is manifested in that peptides 3I and 3V, which differ respectively in their content of β-branched Ile or Val residues, differ in their secondary structures at monomeric concentrations in 2 mM SDS and in mixed lipid vesicles of phosphatidic acid and phosphatidylcholine. The overall results suggest that peptide segments can be conformationally flexible entities poised to react to minor modulations in cither the molecular environment or the primary sequence, a circumstance that may he relevant to protein functioning and folding. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The standard collagen triple‐helix requires a perfect (Gly‐Xaa‐Yaa)n sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1‐ and 4‐residue interruptions showed a localized perturbation within the triple‐helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly‐Pro‐Hyp)n peptide context. All peptides in this set show decreases in triple‐helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5‐residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple‐helix peptides containing 8‐ and 9‐residue interruptions exhibit a strong propensity for self‐association to fibrous structures. In addition, a small peptide modeling only the 9‐residue sequence within the interruption aggregates to form amyloid‐like fibrils with antiparallel β‐sheet structure. The 8‐ and 9‐residue interruption sequences studied here are predicted to have significant cross‐β aggregation potential, and a similar propensity is reported for ~10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple‐helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.  相似文献   

18.
Amino acid sequence specificities of an adhesive recognition signal   总被引:11,自引:0,他引:11  
Synthetic peptides derived from the cell-binding domain of fibronectin have previously been found to inhibit fibronectin-mediated adhesion in vitro competitively and reversibly, as well as inhibiting cell migratory events in vivo. The amino acid sequence specificity required for this inhibitory activity has been examined further using variations of the originally identified active peptide sequences. The most active small peptide was found to be the pentapeptide Gly-Arg-Gly-Asp-Ser. Although the tetrapeptide Arg-Gly-Asp-Ser was found to retain substantial activity, it was approximately threefold less active. An "inverted" peptide sequence with these same four amino acids arranged in the mirror symmetrical sequence Ser-Asp-Gly-Arg was found to be nearly as active as the forward sequence. However, the same inverted tetrapeptide sequence embedded in a synthetic decapeptide derived from a sequence of histocompatibility antigens has minimal activity, suggesting the importance of adjacent sequences in modifying the activity of such peptides. Neither substitution of amino acids of the same charge nor reversal of the positions of the two charged amino acids retains biological activity. Decreasing the spacing between the charged residues also causes a loss of activity. Our results suggest the hypothesis that this adhesive recognition signal consists of a specific arrangement of one acidic and one basic charged group and additional information provided by adjacent amino acids.  相似文献   

19.
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A51 and the C-terminal cell wall anchor site at residue T1086. The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A51, were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.  相似文献   

20.
Studies on the biosynthesis of the chloroplast coupling factor 1 (CF1) in Chlamydomonas reinhardi have been initiated. The ratio of CF1 to chlorophyll in the cell was shown to be independent of the density of the culture. No turnover of assembled CF1 could be detected, thus suggesting that CF1 was synthesized at a rate equivalent to that of net chlorophyll synthesis. A lag of between 5 to 7 minutes in the incorporation of radioactive precursor sulfate into assembled CF1 was measureable. This puts an upper limit on the pool size of any precursor to the assembled CF1 complex. The pool size is estimated to be equivalent to 1% of the total CF1 in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号