首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Subtilisin Carlsberg (SK) was shown to catalyze the solid phase segment coupling of peptides in complex with sodium dodecyl sulfate (SDS) in an organic medium on Aminosilochrom and polyvinyl alcohol (PVA) cryogel activated with glutaraldehyde or divinylsulfone. Diamines of different lengths with a general formula NH2-(CH2)n-NH2 (n = 2, 4, and 6) were used as spacers between the PVA cryogel and the peptide. A model reaction of enzymatic attachment of the Dnp-Ala-Ala-Leu-OMe tripeptide to the PVA cryogel was carried out by treatment with the SDS-SK complex in a mixture of anhydrous ethanol and DMSO (7: 3, v/v) using a tenfold excess of the carboxyl component. The molar enzyme-substrate ratio was 1 : 88. The effect of the method of matrix activation, length of a spacer, and reaction time on the coupling efficiency was studied. Hexamethylenediamine was found to be the most effective spacer for the enzymatic coupling on the PVA cryogel activated with glutaraldehyde (the reaction proceeded with the highest yield of 60%). The reaction efficiency was considerably lower in the case of ethylenediamine and tetramethylenediamine (10 and 15%, respectively). The best results were obtained on the PVA cryogel activated by divinylsulfone with hexamethylenediamine as a spacer. A two-step condensation of tripeptides was carried out on this supportsupport. The second step of condensation was shown to proceed better (in 85% yield) in comparison with the first step (37% yield).  相似文献   

2.
The technique based on sol–gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane–polyvinyl alcohol (POS–PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS–PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS–PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS–PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis–Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS–PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis–Menten constant value (Km) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities.  相似文献   

3.
Cross-linked magnetic chitosan beads were prepared in presence of epichlorohydrin under alkaline conditions, and subsequently incubated with glutaraldehyde in order to obtain an activated support for covalent attachment of nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT). Changing the amount of magnetite (Fe3O4) and epichlorohydrin (EPI) led to different macroscopic beads to be used as supports for enzyme immobilization, whose morphology and properties were characterized by scanning electron microscopy, spin electron resonance (ESR), and vibrating sample magnetometry (VSM). Once activated with glutaraldehyde, the best support was chosen after evaluation of immobilization yield and product yield in the synthesis of thymidine from 2′-deoxyuridine and thymine. In addition, optimal conditions for highest activity of immobilized LrNDT on magnetic chitosan were determined by response surface methodology (RSM). Immobilized biocatalyst retained 50 % of its maximal activity after 56.3 h at 60 °C, whereas 100 % activity was observed after storage at 40 °C for 144 h. This novel immobilized biocatalyst has been successfully employed in the enzymatic synthesis of 2′-deoxyribonucleoside analogues as well as arabinosyl-nucleosides such as vidarabine (ara-A) and cytarabine (ara-C). Furthermore, this is the first report which describes the enzymatic synthesis of these arabinosyl-nucleosides catalyzed by an immobilized nucleoside 2′-deoxyribosyltransferase. Finally, the attached enzyme to magnetic chitosan beads could be easily recovered and recycled for 30 consecutive batch reactions with negligible loss of catalytic activity in the synthesis of 2,6-diaminopurine-2′-deoxyriboside and 5-trifluorothymidine.  相似文献   

4.
The hydrogenase from the sulfate reducer Desulfovibrio gigas has been immobilized by covalent coupling onto a porous silica support. Two methods have been used: glutaraldehyde activation of aliphatic amino Spherosil and diazotation of aromatic amino Spherosil. The effect of cytochrome C3 and CC3 addition during coupling has been investigated. The highest enzymatic activity (4440 U/g support) and immobilization yield (29 %) was obtained when coupling hydrogenase in the presence of cytochrome C3 or CC3 with diazotized aromatic amino silica. This immobilized hydrogenase preparation which shows a very good resistance to oxygen inactivation seems suitable for hydrogen photoproduction by coupling with illuminated chloroplasts.  相似文献   

5.
S-(+)-2,2-dimethylcyclopropanecarboxylic acid (S-(+)-DMCPA) is a key chiral intermediate for the synthesis of Cilastatin. The enzymatic preparation of S-(+)-DMCPA has attracted much attention. In order to improve the activity and stability of Novozyme 435 for enzymatic preparation of S-(+)-DMCPA from 2,2-dimethylcyclopropane carboxylate (DMCPE), the glutaraldehyde modification for Novozyme 435 was investigated and the glutaraldehydemodified Novozyme 435 was used as biocatalyst for the synthesis of S-(+)-DMCPA. The results showed that the modified Novozyme 435 had a better reusing merit than unmodified enzyme. The maximum specific activity was obtained by modification Novozyme 435 with 1.5% glutaraldehyde solution under the conditions of shaking at 200 rpm and 30°C for 45 min. The optimal enzymatic hydrolysis conditions for glutaraldehyde-modified Novozyme 435 were also confirmed. The optimized hydrolytic reaction mixture contained 10 mL potassium phosphate buffer (1.0 mol/L, pH 7.6), 90 mg of DMCPE and 160 mg of glutaraldehyde-modified enzyme, and the reaction was performed at 30oC and 200 rpm for 52 h. The reusing efficiency of modified Novozyme 435 was further evaluated. Under the optimal conditions, the modified enzyme remained 76.0% of its original yield after 10 times reuse, but the optical purity of the product kept intact; whereas the yield of unmodified enzyme reduced to 20.8% of its initial value and the ee value of product decreased a lot to 90.7% after 7 times recycle. These results showed that the modified Novozyme 435 was more cost-effective for the preparation of S-(+)-DMCPA in industrial application.  相似文献   

6.
Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Yx/s of 0.295 g of cells/g sucrose and a specific growth rate (μ) of 0.192 h−1. The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 °C an isomaltulose yield of 89–94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 °C ranged from 1.6 to 4.0 g isomaltulose g−1 pellet h−1, respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations.  相似文献   

7.
Abstract

We have investigated the direct enantioselective amidation of mandelic acid with ammonia, catalyzed by a variety of commercial lipases including those from Candida rugosa, Mucor miehei, Pseudomonas sp., Rhizomucor miehei, and Thermomyces lanuginosus covalently immobilized onto Florisil® support via glutaraldehyde and polysuccinimide spacer arms. All the immobilized lipase preparations tested preferentially amidated the R isomer of mandelic acid. The highest amide yields were obtained for immobilized Pseudomonas sp. lipase preparations under the optimized reaction conditions. After 24 h of amidation, the reaction had proceeded with an excellent yield (50%) and enantiopurity (> 99%). The immobilized Pseudomonas sp. lipase preparations catalyzed the amidation reaction with the same yield and enantioselectivity. The enzyme immobilized via a glutaraldehyde spacer arm showed better reusability than that immobilized via a polysuccinimide spacer arm.

In view of these results, it is revealed that the direct amidation of mandelic acid catalyzed by the immobilized Pseudomonas sp. lipases is a facile and effective methodology for obtaining (S)-mandelic acid and (R)-mandelamide.  相似文献   

8.
Bioluminescence activity and ATP pool were investigated in the cells of psychrophilic bacteria Photobacterium phosphoreum collected from the exponential and stationary growth phases and immobilized in polyvinyl alcohol (PVA) cryogel. In liquid culture, ATP pool remained at an almost constant level throughout the luminescence cycle (over 100 h). The ATP pool in the stationary-phase and PVA-immobilized cells remained constant throughout their incubation in the medium (over 200 h) and in 3% NaCl solution (over 100 h). Quantitative assessment of integral photon yield and ATP pool indicated that bioluminescence decay in growing or stationary cells was not caused by limitation from the energy substrates of the luciferase reaction. Kinetic and quantitative parameters of emission activity and ATP pool excluded the possibility of formation of the aldehyde substrate for luciferase via reduction of the relevant fatty acids in NADPH and ATP-dependent reductase reaction and its oxidation in the monooxygenase reaction. Our results indicate that the aliphatic aldehyde is not utilized in the process of light emission.  相似文献   

9.
《Process Biochemistry》2014,49(1):10-18
In this study, a new cell immobilization technique is presented. Cells of Clostridium acetobutylicum DSM 792 form a macroporous aggregate through cryogelation with concomitant crosslinking together with activated polyethyleneimine (PEI) and poly(vinyl alcohol) (PVA). The cell based cryogel presents a highly porous, elastic structure with walls consisting of densely packed crosslinked cells. The immobilization process maintained the viability of cells as new bacterial cells were observed when gel-plugs were incubated in liquid medium, glucose was consumed and solvent production was observed. Solvent production was improved 2.7-fold in immobilized cells in comparison to free cells. It was possible to reuse the gel-plugs 3–5 times in partial or completely fresh medium, reaching a maximum butanol concentration in the broth of 18.2 g/l and yield of 0.41 (g/g) in one of the cycles. The use of cells based cryogels can be a good alternative for improvement of acetone-butanol-ethanol (ABE) process as cells are immobilized in a macroporous structure with low limitations for mass transfer with potential for high yield production.  相似文献   

10.
A procedure for large-scale preparation of a lectin from Crotalaria juncea seeds is described. The method involve fractionation by pH- and ammonium sulfate precipitation followed by biospecific affinity chromatography. The adsorbent used for the affinity chromatography was prepared by coupling galactose to Sepharose 6B activated with divinylsulfone. A comparison of different apparatus and techniques involved in the preparation is discussed. The yield and quality of the lectin prepared at a large scale were comparable with laboratory-scale preparation. From 50 kg Crotalaria juncea beans, 14.4 g Crotalaria lectin were obtained.  相似文献   

11.
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017  相似文献   

12.
Summary The enzyme mandelonitrile lyase was covalently immobilized on solid support materials using different methods. Immobilization on porous silica using coupling with glutaraldehyde afforded preparations with high enzyme loading (up to 9% (w/w)). The immobilized enzyme was used in a packed bed reactor for the continuous production of d-mandelonitrile from benzaldehyde and cyanide. The influence of the flow rate, pH, substrate concentrations and enzyme loading on the reaction yield and the enantiomeric purity of the product was investigated. In order to suppress the competing spontaneous reaction, the enzymatic reaction must be rapid. A flow rate of 9.5 ml/min (0.1 M benzaldehyde and 0.3 M HCN) through a 3 ml reactor afforded a 86% yield of mandelonitrile with 92% enantiomeric excess. No leakage of enzyme occurred under continuous operation. One column was used continuously for 200 h without any decrease in yield or enantiomeric purity of the product. High concentrations of benzoic acid were shown to decrease the operational stability of the system.  相似文献   

13.
Bacillus subtilis α-amylase (EC 3.2.1.1) has been immobilized on zirconia-coated alkylamine glass by using the process of glutaraldehyde coupling. The immobilized enzyme preparation exhibited 52% of the initial enzyme activity and a conjugation yield of 28 mg/g support. The Km value of the immobilized α-amylase was decreased by immobilization while Vmax was unaltered. Ea of the enzyme was decreased upon conjugation. The soluble enzyme was optimally active at pH 5.6 while the immobilized enzyme exhibited optimal activity in the pH range 5.4–6.2. The alkylamine-immobilized enzyme has also been characterized through its isoelectric point. The industrial importance of this work is discussed.  相似文献   

14.
The total synthesis of the insect neuropeptide derivative Z-Gly-Gly-Ser-Leu-Tyr-Ser-Phe-Gly-Leu-NH2 has been carried out by a convergent solid phase strategy. For the coupling of the N-terminal pentapeptide to the C-terminal tetrapeptide, three different methods were assayed. Racemization of the acyl activated amino acid during the fragment condensation reaction was monitored by HPLC. Best results were obtained by enzymatic coupling in a low water containing media using adsorbed alpha-chymotrypsin. An optically pure product was obtained in 82% yield after 1 h of reaction. Chemical methods such as DIC/HOBt and BOP/HOBt/NMM always rendered highly optically impure products containing 10-20% of the D-epimer.  相似文献   

15.
12-Tungstophosphoric acid (PW) supported on different metal oxides (SiO2, γ-Al2O3, KSF, K10) and activated carbon were prepared by impregnation method and their catalytic performances were evaluated in three component condensation of benzaldehyde, ethyl acetoacetate and ammonium acetate to afford corresponding 1,4-dihydropyridine. A high catalytic activity was found over silica supported PW. Effect of PW loading, catalyst loading and solvent was studied to introduce the best reaction condition. Based on the above experimental finding, catalytic performances was optimized with a loading of 40% PW onto SiO2 (0.2 g) under solvent-free condition. The characterization data derived from FT-IR, XRD, and TGA-DSC techniques reveal that the PW on silica support exists in Keggin structure. In addition, acidity measurements were performed by potentiometric titration with n-butylamine. The activity of the catalysts is strongly dependent on their acidic characteristic which, in turn, depended on PW loading. Finally, a series of 4-aryl, N-alkyl, and N-aryl substituted 1,4-dihydropyridines have been synthesized in high to excellent yield in short reaction times. PW/SiO2 was found to be reusable and a considerable catalytic activity still could be achieved after fourth run.  相似文献   

16.
In present work, Rhizopus oryzae lipase immobilized on a film prepared using blend of hydroxylpropyl methyl cellulose (HPMC) and polyvinyl alcohol (PVA) was investigated for synthesis of citronellol esters with supercritical carbon dioxide (Sc-CO2) as a reaction medium. The transesterification reaction was optimized for various reaction parameters like effect of molar ratio, acyl donor, time, temperature, enzyme concentration, effect of pressure and co-solvent to achieve the maximum yield of desired product. The results obtained signify remarkable increment (about eightfold) in the yield of citronellol acetate (91%) as compared to that of free lipase (11%) in Sc-CO2. The developed biocatalytic methodology provides a substantial advantage of low biocatalyst loading (1.5%, w/v), lower reaction temperature (45 °C) and lower pressure (8 MPa) as compared to previous reports. The immobilization method has significantly enhanced the operational stability of lipase for ester synthesis under Sc-CO2 conditions. The developed methodology was successfully applied for synthesis of three different industrially important citronellol esters namely citronellol acetate (91%), citronellol butyrate (98%), citronellol laurate (99%) with excellent yields using vinyl esters as acyl donor under Sc-CO2 conditions. In addition, the immobilized biocatalyst was effectively recycled for three consecutive recycles.  相似文献   

17.
Abstract

Glycerol dehydrogenase (GlyDH) which oxidizes glycerol to the value-added chemical, 1,3-dihydroxyacetone, is of interest due to the oversupply of glycerol as a by-product of the biodiesel industry. To exploit the enzymatic oxidation of glycerol industrially, silica coated magnetic Fe3O4 nanoparticles were prepared and then activated with an amino-silane reagent for covalent immobilization of GlyDH via a glutaraldehyde linkage. At the optimal glutaraldehyde concentration of 0.05% (v/v), an enzyme loading of up to 57.5 mg/g-nanoparticles was achieved with 81.1% of the original activity retained. Reaction kinetic analysis indicated that the immobilized GlyDH had almost the same Michaelis-Menten constants for both NAD+ and glycerol as the free GlyDH did. However, after immobilization the turnover number kcat of the GlyDH decreased from 164 s?1 to 113 s?1, and the reaction was 1.3-fold less sensitive to inhibition by DHA, which could compensate the decrease in kcat. The immobilized GlyDH was also less sensitive to changes in pH and temperature, and showed a 5.3-fold improvement in thermal stability at 50°C. Furthermore, excellent reusability was observed such that 10 cycles of re-use only led to 9% loss of enzyme activity.  相似文献   

18.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

19.
Polycaprolactone (PCL) was synthesized by ring-opening polymerization of ε-caprolactone through two different enzymatic processes. The lipase from Candida antarctica B, immobilized on macroporous acrylic acid beads, was employed either untreated or coated with small amounts of ionic liquids (ILs). Monocationic ionic liquids, [C n MIm][NTf2] (n = 2, 6, 12), as well as a dicationic ionic liquid, ([C4(C6Im)2][NTf2]2), were used to coat the immobilized lipase and also as the reaction medium. In both methods, the polarity, anion of the ILs concentration and viscosity strongly influenced the reaction. Coating the immobilized enzyme with ILs improved catalytic activity and less ILs was required to produce PCL with a higher molecular weight and reaction yield. At 60 °C and ILs/Novozyme-435 coating ratio of 3:1 (w/w) for 48 h, the highest M w and reaction yield of PCL were 35,600 g/mol and 62 % in the case of [C12MIm][NTf2], while the M w and reaction yield of PCL was 20,300 g/mol and 54 % with [C12MIm][NTf2] and catalyzed by untreated lipase.  相似文献   

20.
Polyvinyl alcohol (PVA) cryogel covered stents may reduce complications from thrombosis and restenosis by decreasing tissue prolapse. Finite element analysis was employed to evaluate the effects of PVA cryogel layers of varying thickness on tissue prolapse and artery wall stress for two common stent geometries and two vessel diameters. Additionally, several PVA cryogel covered stents were fabricated and imaged with an environmental scanning electron microscope. Finite element results showed that covered stents reduced tissue prolapse up to 13% and artery wall stress up to 29% with the size of the reduction depending on the stent geometry, vessel diameter, and PVA cryogel layer thickness. Environmental scanning electron microscope images of expanded covered stents showed the PVA cryogel to completely cover the area between struts without gaps or tears. Overall, this work provides both computational and experimental evidence for the use of PVA cryogels in covered stents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号