首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胆红素是人胎盘谷胱甘肽S—转移酶(GST—π)的别构效应剂,在胆红素存在下,底物谷胱甘肽(GSH)呈同促正协同效应:胆红素浓度愈高,Hill氏系数(n_H)也愈大,胆红素本身对酶的结合也呈同促正协同效应。胆红素还能加速GST-π在缺乏疏基保护剂时的自然失活,加速GST-π的氨基被2,4,6—三硝基苯磺酸(TNBS)、胍基被丁二酮以及羧基被N-乙基-N’-(3-二甲胺基丙基)羧二亚胺(EDC)的修饰,但却抑制N-乙基顺丁二酰亚胺(NEMI)对疏基的修饰,胆红素这种对失活作用的影响可能和胆红素引起GST-π空间构象的变化有关,对其他可能性也作了讨论。  相似文献   

2.
研究了人胎盘型谷胱甘肽S-转移酶(GST-π)的动力学。底物GSH和1-氯-2,4-二硝基苯(CDNB)的km分别为0.109和0.870mmol/L。苯唑青霉素和先锋霉素Ⅰ能抑制GST—π,以先锋霉素较明显,属非竞争性抑制。溴磺酜对CDNB也是非竞争作用,但胆红素则对CDNB竞争而对GSH非竞争地抑制酶活力。S-正辛烷和S-正已烷谷胱甘肽与GSH竞争而与CDNB非竞争地抑制GST-π。已充分证明GST-π所催化的双底物反应属随机顺序机制。化学修饰实验发现:巯基、胍基、氨基、羧基和吲哚基可能参与酶活性中心的组成。  相似文献   

3.
 用巯基试剂5.5'-二硫双(2-硝基苯甲酸)(DTNB)测得人胎盘谷胱甘肽S-转移酶(GST-π)的总巯基数为每亚基2个,均为表面巯基,,其中一个与DTNB反应快,被修饰后可导致酶活力全部丧失。另一巯基与DTNB反应较慢,可能与酶活力无关。用在12℃测定剩余巯基和Stallcup-Koshland作图法求得DTNB修饰快反应和慢反应巯基的速度常数分别为44056和162min~(-1)(mol/L)~(-1)。底物谷胱甘肽的衍生物S-正辛烷谷胱甘肽(S-o-GSH)能保护GST-π能保护的快反应巯基免受DTNB的修饰,使反应速度常数随着S-o-GSH浓度的增高而降低。S-o-GSH也能保护酶被N-乙基马来酰亚胺(NEMI)修饰失活,但不能保护慢反应巯基被DTNB修饰。另一底物2,4-二硝基氯苯(CDNB)对NEMI的修饰失活没有保护作用。上述结果提示快反应巯基参与GST-π和谷胱甘肽的结合,是组成活性中心的重要基因。  相似文献   

4.
本文报道纯化的高粱叶片PEP羧化酶经氨基修饰剂TNBS和PLP的修饰迅速失活。酶的TNBS失活与保温时间和抑制剂浓度呈函数关系并表现为拟一级反应的特性。动力学资料表明酶仅被1分子TNBS修饰即失活。TNBS修饰酶的吸收光谱特性表明被修饰的是酶蛋白的赖氨酸残基。底物(PEP)和效应剂(G6P)保护酶免被TNBS失活。计算G6P和酶的解离常数K_d=2.39×10~(-3)M。酶的其他反应组分HCO_3~-和MgCl_2单独存在时均不影响TNBS对酶的失活作用。在被TNBS修饰过程中还导致酶对G6P迅速脱敏,同时却保持酶对甘氨酸的敏感性。  相似文献   

5.
本文报道纯化的高粱叶片PEP 羧化酶经氨基修饰剂TNBS 和PLP 的修饰迅速失活。酶的TNBS 失活与保温时间和抑制剂浓度呈函数关系并表现为拟一级反应的特性。动力学资料表明酶仅被1分子TNBS 修饰即失活。TNBS 修饰酶的吸收光谱特性表明被修饰的是酶蛋白的赖氨酸残基。底物(PEP)和效应剂(G6P)保护酶免被TNBS 失活。计算G6P 和酶的解离常数K_d-2.39×10~(-3)M。酶的其他反应组分HCO_3~-和MgCl_2单独存在时均不影响TNBS 对酶的失活作用。在被TNBS 修饰过程中还导致酶对G6P 迅速脱敏,同时却保持酶对甘氨酸的敏感性。  相似文献   

6.
将人胎盘组织粗匀浆经105000×g超速离心后,用S-已基谷胱甘肽-琼脂糖-6B亲和层析一步纯化法获得电泳纯的人胎盘GST(简称GST-π)。其比活性较粗匀浆高194.7倍,回收率为50%。再经DE_(52)交换柱进一步纯化,用KCl浓度梯度洗脱后为单一锐峰,等电聚集电泳呈一条带,等电点(pI)为4.60。GST-π经TSKgel-G3000SW柱高效液相层析,也为单一对称锐峰,测得其分子量为45.2kD;在SDS-PAGE电泳也为单一区带,测得其亚基单位的分子量为22.5kD。GST-π氨基酸组成分析可检出十六种氨基酸,其中以谷氨酸、亮氨酸、丙氨酸、天冬氨酸及甘氨酸含量较高。 GST-π酶动力学研究证明GST-π以GST和CDNB为底物时km值分别为0.16mmol/L和0.55mmol/L,经测定表明,GST-π的最适作用pH值为7.5,在pH6.5—9的范围内较为稳定,体外GST-π在温度超过25℃对容易失活。以GST-π为抗原,得到兔抗人GST-π抗血清,其效价为1:32,与人肝GSTs不发生免疫交叉反应。  相似文献   

7.
 用荧光光谱法、截流荧光法和酶活力测定法研究了在盐酸胍溶液中米曲霉氨基酰化酶变性动力学。我们发现在4.8mol/L盐酸胍溶液作用下(0.05mol/L磷酸缓冲溶液,pH7.4,25℃),氨基酰化酶二聚体解离成单亚基过程是一个十分快速的过程,反应速率常数k为3361l/s,即约需3ms时间完成;而单亚基分子的构象变化需要约20min方能到达平衡态,这是一个逐渐变化的缓慢过程。酶分子在胍作用下的失活现象同酶分子的结构变化紧密相关,在胍浓度大于4mol/L时酶完全失活。在高浓度盐酸胍下酶失活主要是因为酶二聚体迅速解离成单亚基的过程和单亚基构象逐渐变化的缓慢过程。双亚基解离常数大小标志着酶分子亚基间作用力的强弱。  相似文献   

8.
比较蛇肌果糖1,6-二磷酸酯酶的别构抑制剂AMP和它的类似物对该酶的抑制作用的结果表引,5′-AMP的嘌呤环上6位氨基以及核糖上5′磷酸基团是抑制剂和别构部位结合所必需的。8-BrAMP和5′-AMP具有相似的抑制能力,表明嘌呤环上的咪唑部分对于AMP的抑制作用贡献不大。5′-d-AMP对蛇肌果糖1,6-二磷酸酯酶的抑制作用比较特殊,按照50%抑制该酶时的抑制剂浓度计算,得到的抑制常数为3×10~(-6)M,其数值和5′-AMP的抑制常数接近。但是当抑制剂浓度增大时所能达到的最大抑制程度只有60%左右。表明5′-dAMP和5′-AMP结合后,对果糖1,6-二磷酸酯酶的催化部位的影响不同,2′羟基和酶的结合可能和别构部位的信号传导到催化部位有关系。被水溶性羰二亚胺修饰的蛇肌果糖1,6-二磷酸酯酶受5′-AMP的抑制作用和5′-dAMP的抑制作用相似,推测这个传导变构部位的信息到催化部位去的基团有可能和羧基有关。  相似文献   

9.
目的比较3型肺炎链球菌荚膜多糖不同基团活化对多糖抗原性及结合物免疫原性的影响。方法分别采用1-氰基-4-二甲氨基-吡啶四氟硼酸(1-cyano-4-dimethylaminopyridinium tetrafluoroborate, CDAP)活化多糖羟基,碳二亚胺(1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, EDC)活化多糖羧基,再与己二酰肼(adipic dihydrazide, ADH)偶联获得活化度相近的多糖衍生物。用三硝基苯磺酸方法(trinitrobenzene sulfonic acid, TNBS)测定多糖活化度;高效液相分子排阻与多角度激光散射仪联用(HPLC-SEC-MALLS)分析衍生物分子分布和大小;Zeta电位仪与滴定仪联用分析其表面电荷变化;速率比浊法和免疫双扩散法比较其抗原性变化;利用多糖衍生物与载体蛋白偶联获得的不同结合物免疫小鼠,间接ELISA分析不同结合物免疫后的IgG抗体浓度,进一步阐述活化过程中多糖抗原性的变化对结合物免疫原性的影响。结果 TNBS结果显示,获得同一基团不同活化度(5%~30%)、不同基团(羟基和羧基)活化度相近的多糖衍生物;等电点分析结果显示,不同基团的活化会导致多糖表面不同的电荷变化;而速率比浊和免疫双扩散的结果显示,多糖羟基的活化会导致多糖抗原性略有下降,但不同活化度之间差异较小;在相似活化度情况下,羧基衍化物的抗原性更低,随着羧基活化度的增加,多糖抗原性下降明显(约60%)。小鼠ELISA结果显示,对羧基不同程度活化得到的结合物,其免疫原性较多糖明显提高,差异具有统计学意义(P<0.05);随着多糖羧基活化度的增加,结合物免疫原性先增加后降低。结论 3型多糖重复单位上的羧基的改变对抗原性影响较羟基更大,对羧基的过度活化会影响结合物的免疫原性。  相似文献   

10.
用几种蛋白质侧链修饰试剂对β-N-乙酰氢基己糖苷酶进行化学修饰,在一定条件下,当巯基、羟基、酪氨酸残基分别被IAA及NEM、PMSF、NAI修饰后,酶活力不受影响,说明这些基团与活力无关。当羧基、组氨酸及色氨酸残基分别被EDC、DEP、NBS修饰后,酶活力大幅度下降,说明这些基团或者参与了酶催化作用,或者位于酶活性位区附近。  相似文献   

11.
N—乙酰氨基葡萄糖转移酶的化学修饰   总被引:1,自引:0,他引:1  
用化学修饰法和底物保护法研究了大鼠肾脏3种N-乙酰氨基葡萄糖转移酶(GnT)的必需基团,发现氨基和吲哚基为GnT-Ⅲ、GnT-IV和GnT-V共同的必需基团,其中氨基可能参与和共同供体底物UDP-GlcNAc的结合,吲哚基对GnT-Ⅲ和GnT-IV可能是受体底物-七糖糖链Gn2M3Gn2-PA的结合基团,而对GnT-V可能是不参与底物结合的必需基团。胍基可能也参与GnT-Ⅲ和供体底物结合,而对Gn  相似文献   

12.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl胁迫下多裂骆驼蓬幼苗抗坏血酸(ASA)-谷胱甘肽(GSH)循环抗氧化系统及H2O2和丙二醛(MDA)含量的影响。结果表明,0.15mmol.L-1SNP能提高300mmol.L-1NaCl胁迫下多裂骆驼蓬幼苗叶片抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和谷胱甘肽转硫酶(GST)活性,增加还原型抗坏血酸(ASA)和谷胱甘肽(GSH)含量,降低脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量,提高ASA/DHA、GSH/GSSG比率,降低H2O2和MDA水平,对单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)活性无显著影响。NO信号转导途径关键酶鸟苷酸环化酶(GC)抑制剂亚甲基蓝(MB)逆转了SNP对盐胁迫下APX、GR、GST活性和ASA、GSH、DHA,H2O2、MDA含量及ASA/DHA、GSH/GSSG比率的调节效应。由此表明,NO可能通过GC介导的cGMP信号转导参与ASA-GSH循环活性氧清除系统的调节,从而缓解盐胁迫诱导的氧化伤害。  相似文献   

13.
谷胱甘肽S-转移酶(GST)的同工酶mu(GSTM)高表达与卵巢癌顺铂耐药有关.以GST非选择性抑制剂依他尼酸设计二价潜抑制剂双依他尼酸乙醇胺(aminoethanol di-ethacrynic acid,ADEA),测定ADEA及其与还原型谷胱甘肽(glutathione,GSH)加合物对GST同工酶亚型A1、P1...  相似文献   

14.
DEPC能显著抑制GAO的活性。其失活速度表现为假一级动力学特性,并和抑制剂浓度成线性正比关系。底物乙醇酸可保护GAO免受DEPC抑制,羟胺能使被抑制的酶重新复活。光谱测定表明,被抑制的酶只有组氨酸残基被修饰,而酪氨酸残基未被修饰,修饰前后酶的氨基含量均无变化。反应动力学表明,在35℃下,GAO中有一个pK为6.5的解离基团和催化活性有关,其解离⊿H为31610 J/mol。因此组氨酸残基为GAO催化活性的一个必需基团。  相似文献   

15.
嗜水气单胞菌胞外蛋白酶的化学修饰   总被引:8,自引:1,他引:8  
 蛋白酶是嗜水气单胞菌 (Aeromonashydrophila)的重要致病因子 .为研究其结构与功能之间的关系 ,用DEPC、EDC、PMSF、N AI等 9种化学修饰剂处理嗜水气单胞菌J 1株胞外蛋白酶ECPase54,然后检测残余酶活力 ,借以研究酶分子中氨基酸侧链基团与酶活性中心的关系 .结果表明 ,羧基、丝氨酸、ε 氨基、胍基等残基与酶活性无关 ;半胱氨酸残基与酶活性也无直接关系 ;而色氨酸、组氨酸、酪氨酸残基侧链以及二硫键的化学修饰引起酶活性的大幅度的下降 ,说明色氨酸、组氨酸、酪氨酸残基以及二硫键是酶活力所必需的基团  相似文献   

16.
谷胱甘肽转硫酶(GST,EC2.5.1.18.)广泛存在于哺乳动物各组织中,催化GSH与化学物质的亲电子基团结合,最终形成硫醚氨酸排出体外,在体内解毒功能上起重要作用。 胎盘型GST(又称GST_x)为酸性蛋白质,p14.8,分子量47000,由两个亚基组成,在正常成人肝中仅含少量。实验证明,在大鼠增生性肝损害时胎盘型GST水平显著升高,故可做为化学性肝癌的一种指标。  相似文献   

17.
抗体酶设计新思想——疏水腔修饰法   总被引:1,自引:0,他引:1  
提出一种新的抗体酶设计思想———疏水腔修饰法 ,并根据这一思想合成出谷胱甘肽 (GSH)的类似物S 二硝基苯取代的谷胱甘肽二丁酯 (GSH S DNPButyles ter)作为半抗原Hapten 3;将该半抗原连到载体蛋白上进行免疫 ,利用单克隆抗体制备技术得到抗体 1C8,通过 2步化学修饰方法 ,将谷胱甘肽过氧化物酶的催化基团硒代半胱氨酸 (Sec)引入到抗体 1C8可变区中 ,得到转换值即催化中心活力 (kcat)为天然兔肝谷胱甘肽过氧化物酶 1 7倍的抗体酶Se 1C8,是曾经报道抗体酶Se 4A4,Se 4G3的 40倍和 5 3倍 ,是目前与天然酶相比催化效率最高的抗体酶 ,这一结果也验证了提出的抗体酶设计思想  相似文献   

18.
豆壳过氧化物酶的盐酸胍变性与化学修饰研究   总被引:2,自引:0,他引:2  
研究了盐酸胍对豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC1.11.1.7)构象与活力的影响,发现去辅基SHP的盐酸胍变(复)性及荧光变化关系与SHP全酶分子的盐酸胍变(复)性及荧光变化关系明显不同。应用过碘酸氧化法去除SHP分子表面糖链,研究糖链去除对酶性质的影响,则证实了SHP分子表面的糖链去除导致酶热稳定性下降。应用不同的蛋白质侧链修饰剂对SHP进行化学修饰则表明,巯基、酪氨酸和色氨酸残基为酶活力非必需,而羧基、组氨酸和精氨酸残基为酶活力所必需。  相似文献   

19.
以荷花‘微山湖红莲’实生苗为试验材料,研究镉(Cd,50 μmol·L-1)胁迫下,外源乙烯前体1-氨基环丙烷羧酸(ACC,100 μmol·L-1)、ACC与一氧化氮合酶(NOS)抑制剂N-硝基-L-精氨酸(L-NNA,200 μmol·L-1)、ACC与硝酸还原酶(NR)抑制剂钨酸钠(Tu,1 mmol·L-1),ACC与一氧化氮(NO)清除剂2-苯基-4,4,5,5-四甲基咪唑啉-3-氧代-1-氧(PTIO,200 μmol·L-1),外源NO供体硝普钠(SNP,500 μmol·L-1)、SNP与乙烯信号转导抑制剂硫代硫酸银(STS,100 μmol·L-1)处理下荷花幼苗叶片的受害程度及抗坏血酸(AsA)-谷胱甘肽(GSH)循环的变化情况.结果表明: Cd胁迫下,荷花叶片受害症状明显,其相对电导率、丙二醛(MDA)、AsA和GSH含量显著上升,抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)活性明显降低;ACC的添加进一步增加了Cd对荷花叶片的毒害症状,并加剧了4种抗氧化酶活性的降低,但增加了抗氧化剂的含量;SNP的添加对荷花叶片的伤害起到加重作用,并导致GR和MDHAR活性降低以及AsA和GSH含量的升高;PTIO可显著提高Cd和ACC复合处理下荷花叶片APX、GR、MDHAR和DHAR的活性并降低AsA和GSH的含量,而L-NNA和Tu效果不如PTIO明显;STS可显著缓解Cd和SNP复合处理下荷花叶片的毒害症状,并提高4种抗氧化酶的活性、降低AsA和GSH的含量.由此说明,乙烯和NO在AsA-GSH循环中存在互作,二者相互促进,共同调控AsA-GSH循环,进而参与调控荷花对Cd胁迫的响应.  相似文献   

20.
【目的】本研究旨在通过分析化学修饰剂对棉铃虫Helicoverpa armigera可溶型海藻糖酶活性的影响,以明确海藻糖酶活性中心的结构特点和氨基酸构成。【方法】采用化学修饰方法,测定不同修饰剂处理后棉铃虫5龄幼虫海藻糖酶催化活性的变化,进而通过化学修饰反应失活常数来推测酶活性中心的特定氨基酸残基数量。【结果】采用8 mmol/L水溶性碳二亚胺(carbodiimide,EDC)溶液和25 mmol/L苯甲酰甲醛(phenylglyoxal,PG)溶液分别对棉铃虫5龄幼虫海藻糖酶羧酸基团和精氨酸残基进行修饰后,其活性分别减少81.58%和54.14%,这表明对羧酸基团和精氨酸残基的修饰可有效抑制海藻糖酶活性。底物海藻糖可保护海藻糖酶不受修饰剂的影响。修饰动力学结果显示,海藻糖酶活性中心可能包含1个羧酸基团和2个精氨酸残基。【结论】结果表明,含有羧基的谷氨酸和天冬氨酸是海藻糖酶活性中心的催化残基,精氨酸是维持海藻糖酶活性的必要残基。本研究结果可为开发新型农药提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号