首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate of alanine transport into the liver limits its utilization even under the high alanine load resulting from a 90% casein diet, given that the rat has been adapted to that diet. A coordinated acceleration of alanine catabolism allows transport to remain ratelimiting. which in turn allows the adaptive regulation of transport to remain effective at high alanine loads. Accelerated degradation of alanine may change the hepatic amino acid content in a way that derepresses the activity of the alanine carrier system(s).  相似文献   

2.
L-Alanine transport was studied in plasma-membrane vesicles from rat liver. A gradient of NaSCN, but not of KSCN, stimulated alanine uptake. Monensin plus carbonyl cyanide p-trifluoromethoxyphenylhydrazone abolished the observed overshoot in uptake. After equilibration of alanine, NaSCN induced uphill transport.  相似文献   

3.
The cellular transport of calcium in rat liver   总被引:5,自引:1,他引:4       下载免费PDF全文
The bidirectional transport of calcium in rat liver was studied using slices labeled with Ca47 in a closed two compartment system. Steady-state conditions were observed with influx and efflux transfer coefficients of 0.070 and 0.018 per minute, respectively. The rapidly exchanging cell fraction of calcium existed at a concentration three times higher than the average cell concentration of calcium and occupied cell loci comprising less than 25% of the cell mass, suggesting that calcium associated with the cell membranes, nuclei, and mitochondria participated in the rapidly exchanging fraction. At pH 7.4 and 377deg;C, the influx transfer coefficient was 25% above the steady-state condition and accumulation of calcium by the slices occurred. Studies of the effects of varied physical and chemical conditions revealed that the influx transfer coefficient was increased by elevated pH, strontium, certain metabolic inhibitors, and 2 mM concentrations of cyclic adenosinemonophosphate and adenosinetriphosphate. The influx transfer coefficient was decreased by reduced temperature, decreased pH, magnesium, and 10 mM adenosinetriphosphate. The efflux transfer coefficient was increased by elevated pH, strontium, iodoacetate, and adenosinetriphosphate, and was decreased by reduced temperature and by N-ethylmaleimide. These data support the thesis that cell transport of calcium is accomplished by the attachment of calcium atoms to the cell surface and transport through the plasma membrane bound to either specific carriers or to membrane constituents. Conditions which change the affinities, capacities, and mobilities of plasma membrane ligands that bind calcium or cause extracellular chelation of calcium are capable of altering the rate of calcium transport.  相似文献   

4.
The effect of ammonia on the catabolism of alanine was studied in the perfused rat liver. Addition of 0.5 mM NH4Cl to the perfusion medium containing 5 mM alanine plus 0.1 mM octanoate produced drastic changes in the metabolite concentrations in the efflux medium. Not only the rate of ureogenesis was activated, but also the formation of glucose, lactate and pyruvate. Additionally, respiration was stimulated, the output of ketone bodies decreased, and the redox ratios lactate/pyruvate as well as 3-hydroxybutyrate/acetoacetate became more oxidized. To interpret the causes of these metabolic changes, a mathematical model was developed. It contains kinetic equations by which fluxes through essential pathways of alanine catabolism, gluconeogenesis and energy metabolism were related to the intracellular concentrations of pyruvate, oxaloacetate and ammonia, as well as to the redox ratios lactate/pyruvate and 3-hydroxybutyrate/acetoacetate. Using a nonlinear regression procedure, the model was suitable to be fitted to the data found in the experiments. The consistency of the model and experiment allowed the changes caused by ammonia to be explained. Primarily, ammonia stimulated ureogenesis hence accelerating the deamination of alanine which led to the increased formation of pyruvate, lactate and glucose. The enhanced energetic load resulting from ureogenesis and gluconeogenesis shifted the mitochondrial and cytosolic NAD systems towards more oxidized states which additionally modified the flux rates. The results demonstrate that there is a high degree of cooperativity between the metabolic pathways.  相似文献   

5.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

6.
(1) Cyclic AMP stimulated alanine transport in isolated hepatocytes by approx. 30%, in the range 0.2-5 mM alanine. (2) Alanine utilisation was also stimulated by cyclic AMP. The rates of transport and metabolism were comparable, both in the presence and absence of cyclic AMP. (3) At concentrations of alanine above 1 mM, addition of ouabain, or the reduction of the Na+ concentration, could partially inhibit transport without affecting the rate of metabolism. (4) At these alanine concentrations, stimulation of metabolism by cyclic AMP was associated with a decrease in the intracellular to extracellular alanine concentration ratio. (5) At alanine concentrations below 0.5 mM, or at higher concentrations when transport was inhibited by reducing the Na+ concentration, cyclic AMP caused an increase in the alanine concentration ratio. (6) It is concluded that at concentrations of alanine above 1 mM, alanine transport is not rate-limiting for alanine metabolism in hepatocytes from fed rats, and cyclic AMP stimulates alanine metabolism primarily by an effect on an intracellular reaction. At physiological concentrations of alanine, however, alanine transport appears to be rate-limiting in agreement with a previous report.  相似文献   

7.
Inhibition of cellular transport processes by 5-thio-d-glucopyranose   总被引:3,自引:0,他引:3  
5-Thio-d-glucopyranose, the nearest analogue of normal d-glucose, which is proving a useful tool in examinations of d-glucose biochemistry, affects active and facilitated-diffusion transport processes. 5-Thio-d-glucose is readily transported in rabbit kidney-cortex slices and reaches a tissue/medium ratio of 6.5 within 40min. The sulphur analogue shows typical saturation kinetics with a K(m) value of 2.4mm and V(max.) value of 70mumol/h per g of cell water. Uptake of 5-thio-d-glucose is phlorrhizin-sensitive, Na(+)-dependent and energy-dependent. d-Galactose and methyl alpha-d-glucopyranoside transport is competitively inhibited by 5-thio-d-glucose with K(i) values of 4.8 and 9.7mm respectively. 5-Thio-d-glucose thus shows all of the characteristics of active transport in kidney cortex. Transport of neutral amino acids in rat kidney cortex is inhibited by 5-thio-d-glucose. Thus 5.6mm-5-thio-d-glucose causes a 25-30% inhibition of the transport of glycine and the non-metabolized amino acids cycloleucine and alpha-aminoisobutyric acid. 5-Thio-d-glucose is freely taken up by the facilitated-diffusion transport system in rat diaphragm muscle. The sulphur analogue inhibits the transport of d-xylose in this tissue but has no effect on the uptake of d-arabinose. It is concluded that the ring heteroatom is not an effector of binding in the transport processes examined and causes no important alteration in the conformation of the sugar. The diabetogenic action produced by 5-thio-d-glucose is due, in part, to the ability of the analogue to interfere with cellular transport processes that use d-glucose.  相似文献   

8.
Neutral-sugar transport by rat liver lysosomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
Transport of D-glucose was studied in Percoll-gradient-purified rat liver lysosomes. D-Glucose uptake had a Km of 22 mM and a t1/2 of approx. 30 s. D-Fucose, 2-deoxyglucose and methyl alpha-glucoside were the most effective competitors for uptake of D-glucose, although D-galactose, D-mannose, D-xylose and L-fucose also appeared to compete for uptake. L-Glucose was a poor competitor for uptake. No competition was observed with N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucuronic acid, N-acetylneuraminic acid, D-glucosamine or the amino acids L-glycine, L-lysine and L-proline. Uptake was unaffected by N-ethylmaleimide, dithiothreitol, KCl, NaCl, ATP/Mg or alteration of buffer pH. D-Glucose efflux from lysosomes was temperature-dependent, with a Q10 of 2.3, and was inhibited by cytochalasin B. Counter-transport could not be demonstrated. In contrast, L-fucose uptake had a Km of 65 mM and was largely unaffected by 5 M excess of neutral D-sugars. Both uptake and efflux of L-fucose were inhibited by cytochalasin B. It appears that lysosomes possess a facilitated transport system for D-glucose and perhaps other neutral D-sugars that is discrete from transport systems for acetylated and acidic sugars.  相似文献   

9.
Calcitonin was studied in isolated kidney cells and in isolated mitochondria. A concentration of 10 ng/ml of synthetic calcitonin increases the cellular accumulation of 45Ca and the total cell calcium. The mitochondrial pool is increased several-fold. Kinetic analysis of the data shows that although the total cellular exchangeable calcium pool is enlarged, calcium influx and efflux are significantly depressed by calcitonin. The absence of phosphate or the presence of inhibitors of mitochondrial calcium transport completely abolish the effects of the hormone. In isolated mitochondria, the hormone stimulates the active calcium uptake and depresses the extramitochondrial calcium activity. Calcitonin counteracts the effects of cyclic AMP which stimulates the release of calcium from mitochondria and increases the extramitochondrial calcium activity. These data indicate that cellular calcium homeostasis is controlled by the mitochondrial calcium turnover. They suggest that calcitomin regulates the cell calcium metabolism and inhibits the transcellular calcium transport by stimulating the rate of calcium uptake by mitochondria which depresses cytoplasmic calcium activity.  相似文献   

10.
11.
12.
The transport of glutamine and alanine into isolated rat colonocytes was studied. The transport of both amino acids appears to be dependent on a Na+ gradient. The apparent Km values for the transport of glutamine and alanine were 2.56 +/- 0.84 and 5.35 +/- 1.20 mM respectively, but with similar Vmax. values. Glutamine and alanine transport were mutually competitive, and the transport of both amino acids was competitively inhibited by 2-methylaminoisobutyrate. In contrast, histidine inhibited the transport of both glutamine and alanine non-competitively. It is concluded that glutamine and alanine are transported into rat colonocytes by a common carrier system similar to System A of other cells. It is suggested that the metabolic function of this transport system in rat colonocytes might be the partial exchange of extracellular glutamine for intracellular alanine.  相似文献   

13.
A 2-fold increase in hepatic alanine concentration was observed in rats bearing a Walker 256 carcinoma growing sub-cutaneously. Decreases were observed in the activities of both cytosolic and mitochondrial isozyme forms of L-alanine-2-oxoglutarate aminotransferase. Activities of two enzymes involved in a secondary pathway of haem synthesis involving alanine, L-alanine-4,5-dioxovalerate aminotransferase and the NADP-requiring isozyme form of 4-oxo-5-hydroxyvalerate dehydrogenase were also reduced but there was no change in liver porphyrin concentration. L-alanine-glyoxalate aminotransferase activity was unaffected. The results are discussed in relation to the utilisation of alanine as a gluconeogenic substrate in the tumor-bearing host.  相似文献   

14.
Proline transport across the inner membrane of rat liver mitochondria shows the following properties: (a) It is stereospecific; the penetration of l-proline is two times faster than the penetration of dl-proline. (b) Proline is accumulated against a concentration gradient, (c) The transport of proline is enhanced in the presence of respiratory substrates such as succinate or tetramethylphenylenediamine + ascorbate; it is inhibited by uncouplers of oxidative phosphorylation. (d) Proline transport is inhibited by mersalyl and p-chloromercuribenzoate, but not by hydrophobic thiol blocking reagents; thus, proline transport involves thiol groups located in a very hydrophilic environment. The penetration of several other neutral amino acids (alanine, glycine, serine) is almost insensitive to mersalyl. These results suggest that proline does not travel across the mitochondrial membrane by free diffusion, but that its transport is mediated by a specific carrier. The rate of proline transport has been compared with the rates of the first two steps of proline oxidation: All of these rates are very similar, indicating that proline transport is not a limiting factor of proline metabolism in rat liver mitochondria.  相似文献   

15.
Sulfate transport by rat liver lysosomes   总被引:2,自引:0,他引:2  
Sulfate transport was examined using membrane vesicles (pH 7.0 inside) prepared from rat liver lysosomes. Sulfate uptake was dependent upon external pH with increased uptake at lower buffer pH. The Km for uptake was 160 microM at pH 5.0 while at pH 7.0, a lower affinity system with a Km of 1.4 mM was present. The protonophore carbonyl cyanide m-chlorophenylhydrazone increased uptake at pH 5.0 while valinomycin/KCl had no effect. In contrast, at pH 7.0, valinomycin-induced changes in membrane potential stimulated uptake. Countertransport of sulfate at pH 7.0 was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonic acid, and a variety of anions: SO4(2-) greater than MoO4(2-) greater than Cl- greater than HPO4- greater than HCO3-. Trans-stimulation of sulfate uptake at pH 7.0 was observed with MoO4(2-) and, to a lesser extent, with S2O3(2-) while Cl-, HPO4-, and HCO3- had little effect. However, chloride loading of vesicles resulted in marked stimulation of sulfate uptake at pH 5.0. It appears that sulfate and protons exit lysosomes in exchange for chloride by a specific, pH-regulated anion transport system.  相似文献   

16.
17.
The Na+-dependent uptake of alanine into plasma membrane vesicles from rat liver was inhibited by N-ethylmaleimide (NEM) and by mersalyl. NEM did not inhibit alanine-independent Na+ uptake and the inhibition of alanine transport by NEM was protected by pre-incubation with an excess of substrate. It was therefore concluded that NEM acted by binding to the alanine carrier. A protein of Mr 20 000 was found to bind NEM with a concentration dependence parallel to the NEM inhibition of alanine transport. The inhibition of binding of [3H]NEM to this protein by mersalyl had a concentration dependence similar to that of the inhibition of transport by mersalyl. Preincubation with L-alanine, but not with D-alanine, led to protection of the Mr 20 000 protein from binding NEM. It is concluded that this protein is an essential component of the alanine transport system.  相似文献   

18.
Galactose metabolism in regenerating rat liver.   总被引:3,自引:5,他引:3       下载免费PDF全文
1. Rats trained on a controlled lighting and feeding schedule were subjected to partial hepatectomy or sham operation. 2. After a large period of about 6h the activity of UDP-galactose 4-epimerase increased threefold, reaching a maximum 4 days after partial hepatectomy, and returned to normal values within a fortnight. 3. The enzyme pattern of the UDP-galactose-glycoprotein galactosyltransferase was biphasic, one peak appearing at 20 h, the second at 72 h after partial hepatectomy. 4. The rise in enzyme activities could be blocked by the injection of actinomycin D, and the Km values for UDP-glucose and UDP-galactose were nearly identical in regenerating and adult liver. It is therefore concluded that the increase in enzyme activity is due to synthesis de novo of enzyme protein.  相似文献   

19.
1. Glycoprotein synthesis was investigated with [1-14C]glucosamine in vivo. [14C]Glucosamine was administered intravenously 24h after hepatectomy to rats. 2. Incorporation into the acid-soluble fraction was maximum at 15 min after injection both in sham-operated and hepatectomized rats. 3. Enhancement of incorporation into UDP-N-acetylhexosamine in regenerating liver was observed. However, its specific activity was lower, because of a greater enhancement of synthesis de novo of the amino sugar. 4. In the liver acid-insoluble fraction, maximum incorporation of [14C]glucosamine was at 30 min in sham-operated rats and 2 h in hepatectomized rats respectively. 5. In sham-operated rats, incorporation into the plasma acid-insoluble fraction followed that of the liver acid-insoluble fraction, but hepatectomy resulted in a rapid enchancement of incorporation into plasma. 6. It is concluded that synthesis of liver glycoproteins is stimulated after partial hepatectomy and that glycoproteins synthesized are released rapidly into the plasma.  相似文献   

20.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号