首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interactive molecular display system has been developed to enable the visualization of the 540 conformations derived from a molecular dynamics calculation of the fluctuations of the enzyme-ligand complex formed between porcine pancreatic elastase (PPE) and acetyl-alanine-proline-alanine (APA). Dynamical interactions between the receptor and the inhibitor are observed at the active site, e.g. the pyrrolidone ring of the ligand 2-proline residue is observed to flex via restrained dihedral angle rotations; the terminal acetate moiety is seen to move between two adjacent binding loci. An animated molecular graphics display, linked to a molecular or stochastic dynamics method, is an instructive and predictive tool for investigating dynamical interactions of enzyme-ligand binding.  相似文献   

2.
Protein dynamics make important but poorly understood contributions to molecular recognition phenomena. To address this, we measure changes in fast protein dynamics that accompany the interaction of the arabinose-binding protein (ABP) with its ligand, d-galactose, using NMR relaxation and molecular dynamics simulation. These two approaches present an entirely consistent view of the dynamic changes that occur in the protein backbone upon ligand binding. Increases in the amplitude of motions are observed throughout the protein, with the exception of a few residues in the binding site, which show restriction of dynamics. These counter-intuitive results imply that a localised binding event causes a global increase in the extent of protein dynamics on the pico- to nanosecond timescale. This global dynamic change constitutes a substantial favourable entropic contribution to the free energy of ligand binding. These results suggest that the structure and dynamics of ABP may be adapted to exploit dynamic changes to reduce the entropic costs of binding.  相似文献   

3.
Major histocompatibility complex class I proteins play a key role in the recognition and presentation of peptide antigens to the host immune system. The structure of various major histocompatibility complex class I proteins has been determined experimentally in complex with several antigenic peptides. However, the structure in the unbound (empty) form is not known. To study the conformational dynamics of the empty major histocompatibility complex class I molecule comparative molecular dynamics simulations have been performed starting from the crystal structure of a peptide bound class I peptide-binding domain in the presence and absence of a peptide ligand. Simulations including the bound peptide stayed close to the experimental start structure at both simulation temperatures (300 and 355 K) during the entire simulation of 26 ns. Several independent simulations in the absence of peptide indicate that the empty domain may not adopt a single defined conformation but is conformationally significantly more heterogeneous in particular within the alpha-helices that flank the peptide binding cleft. The calculated conformational dynamics along the protein chain correlate well with available spectroscopic data and with the observed site-specific sensitivity of the empty class I protein to proteolytic digestion. During the simulations at 300 K the binding region for the peptide N-terminus stayed close to the conformation in the bound state, whereas the anchor region for the C-terminus showed significantly larger conformational fluctuations. This included a segment at the beginning of the second alpha-helix in the domain that is likely to be involved in the interaction with the chaperone protein tapasin during the peptide-loading process. The simulation studies further indicate that peptide binding at the C- and N-terminus may follow different mechanisms that involve different degrees of induced conformational changes in the peptide-binding domain. In particular binding of the peptide C-terminus may require conformational stabilization by chaperone proteins during peptide loading.  相似文献   

4.
5.
The aminoglycoside modifying enzyme (AME) ANT(2″)‐Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside‐modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well‐defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)‐Ia are presented, and suggest that ATP‐aminoglycoside binding repositions the nucleotidyltransferase (NT) and C‐terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site‐directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub‐class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C‐terminal tail of ANT(2″)‐Ia, advocate toward design of kanamycin‐derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin‐resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.  相似文献   

6.
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.  相似文献   

7.
Src homology 2 (SH2) domains are approximately 100 residue phosphotyrosyl peptide binding modules found in signalling proteins and are important targets for therapeutic intervention. The peptide binding site is evolutionarily well conserved, particularly at the two major binding pockets, pTyr and pTyr + 3. We present a computational analysis of diversity within the peptide binding region and discuss molecular recognition beyond the conventional binding motif, drawing attention to novel conserved ligand interaction sites which may be exploitable in ligand binding studies. The peptide binding site is defined by selecting crystal contacts and domains are clustered according to binding site residue similarity. Comparison with a classification based on experimental peptide screening reveals a high level of qualitative agreement, indicating that the method is able independently to generate functional information. A conservation scoring method reveals extensive patches of conservation in some groups not present across the whole family, challenging the notion that the domains recognise only a linear phosphopeptide sequence. Conservation difference maps determine group-dependent clusters of conserved residues that are not seen when considering a larger experimentally determined group. Many of these residues contact the peptide outside the pTyr to pTyr + 3 motif, challenging the conventional view that this motif is largely responsible for ligand recognition and discrimination.  相似文献   

8.
We analyze the encounter of a peptide substrate with the native HIV-1 protease, the mechanism of substrate incorporation in the binding cleft, and the dissociation of products after substrate hydrolysis. To account for the substrate, we extend a coarse-grained model force field, which we previously developed to study the flap opening dynamics of HIV-1 protease on a microsecond timescale. Molecular and Langevin dynamics simulations show that the flaps need to open for the peptide to bind and that the protease interaction with the substrate influences the flap opening frequency and interval. On the other hand, release of the products does not require flap opening because they can slide out from the binding cleft to the sides of the enzyme. Our data show that in the protease-substrate complex the highest fluctuations correspond to the 17- and 39-turns and the substrate motion is anticorrelated with the 39-turn. Moreover, the active site residues and the flap tips move in phase with the peptide. We suggest some mechanistic principles for how the flexibility of the protein may be involved in ligand binding and release.  相似文献   

9.
The biotin repressor is an allosterically regulated, site-specific DNA-binding protein. Binding of the small ligand bio-5′-AMP activates repressor dimerization, which is a prerequisite to DNA binding. Multiple disorder-to-order transitions, some of which are known to be important for the functional allosteric response, occur in the vicinity of the ligand-binding site concomitant with effector binding to the repressor monomer. In this work, the extent to which these local changes are coupled to additional changes in the structure/dynamics of the repressor was investigated using hydrogen/deuterium exchange coupled to mass spectrometry. Measurements were performed on the apo-protein and on complexes of the protein bound to four different effectors that elicit a range of thermodynamic responses in the repressor. Global exchange measurements indicate that binding of any effector to the intact protein is accompanied by protection from exchange. Mass spectrometric analysis of pepsin-cleavage products generated from the exchanged complexes reveals that the protection is distributed throughout the protein. Furthermore, the magnitude of the level of protection in each peptide from hydrogen/deuterium exchange correlates with the magnitude of the functional allosteric response elicited by a ligand. These results indicate that local structural changes in the binding site that occur concomitant with effector binding nucleate global dampening of dynamics. Moreover, the magnitude of dampening of repressor dynamics tracks with the magnitude of the functional response to effector binding.  相似文献   

10.
Vaiana AC  Westhof E  Auffinger P 《Biochimie》2006,88(8):1061-1073
Aminoglycoside antibiotics interfere with the translation mechanism by binding to the tRNA decoding site of the 16S ribosomal RNA. Crystallographic structures of aminoglycosides bound to A-site systems clarified many static aspects of RNA-ligand interactions. To gain some insight on the dynamic aspects of recognition phenomena, we conducted molecular dynamics simulations of the aminoglycoside paromomycin bound to a eubacterial ribosomal decoding A-site oligonucleotide. Results from 25 ns of simulation time revealed that: (i) the neamine part of the antibiotic represents the main anchor for binding, (ii) additional sugar rings provide limited and fragile contacts, (iii) long-resident water molecules present at the drug/RNA interface are involved in the recognition phenomena. The combination of MD simulations together with systematic structural information offers striking insights into the molecular recognition processes underlying RNA/aminoglycoside binding. Important methodological considerations related to the use of medium resolution starting structures and associated sampling problems are thoroughly discussed.  相似文献   

11.
12.
As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition-state mimic. We have applied a classical approach, using molecular dynamics simulations to monitor protein dynamics in the nanosecond regime. We filter out small amplitude fluctuations and focus on the anharmonic contributions to the overall dynamics. This 'essential dynamics' analysis reveals different modes of response along the pathway suggesting that binding, catalysis and product clearance occur along different energy surfaces. Motions in the enzyme with a covalently attached ligand are more complex and occur along several eigenvectors. The magnitudes of the fluctuations in these individual subspaces are significantly smaller than those observed for the substrate and product molecules, indicating that the energy surface is shallow and that a relatively large number of conformational substates are accessible. On the other hand, substrate binding and product release occur at distinct modes of the protein flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond network involving in particular Ser82, which may be a potential cause of product inhibition. Considerations such as these should aid the understanding of mechanisms of substrate, inhibitor or product recognition and could become of importance in the design of new substrates or inhibitors for enzymes.  相似文献   

13.
Yao J  Nellas RB  Glover MM  Shen T 《Biochemistry》2011,50(19):4097-4104
Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two β-trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1α and site 2γ recognition.  相似文献   

14.
15.
Friedman R  Nachliel E  Gutman M 《Biochemistry》2005,44(11):4275-4283
The adipocyte lipid binding protein (ALBP) binds fatty acids (FA) in a cavity that is inaccessible from the bulk. Therefore, the penetration of the FA necessitates conformational changes whose nature is still unknown. It was suggested that the lipid first enters through a "portal region" which consists of the alphaII helix and the adjacent tight turns. The initial event in the ligand binding must be the interaction of the lipid with the protein surface. To analyze this interaction, we have carried out three molecular dynamics simulations of the apo-ALBP, with a palmitate ion initially located at different positions near the protein surface. The simulation indicated that the ligand could adsorb to the protein in more than one location. Yet, in one case, the ligand managed to penetrate the protein by entering a newly formed cavity some 10 A deep. The entry site is located near the N-terminus, at the junction between the loops connecting the beta-strands. Further progression of the penetration seems to be arrested by the need for desolvation of the COOH end of the headgroup. Evolutionary analysis showed that amino acids in this entry site are well conserved. On the basis of these observations, we suggest that the ligand may enter the protein from a site other than the portal region. Furthermore, the rate-limiting step is proposed to be the desolvation of the FA polar headgroup.  相似文献   

16.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation.  相似文献   

18.
Poget SF  Freund SM  Howard MJ  Bycroft M 《Biochemistry》2001,40(37):10966-10972
C-type lectin-like domains are very common components of extracellular proteins in animals. They bind to a variety of ligands, including carbohydrates, proteins, ice, and CaCO3 crystals. Their structure is characterized by long surface loops in the area of the protein usually involved in ligand binding. The C-type lectin TC14 from Polyandrocarpa misakiensis specifically binds to D-galactose by coordination of the sugar to a bound calcium atom. We have studied the dynamic properties of TC14 by measuring 15N longitudinal and transverse relaxation rates as well as [1H-15N] heteronuclear NOEs. Relaxation rates and heteronuclear NOE data for holo-TC14 show minimal variations, indicating that there is no substantial difference in rigidity between the elements of regular secondary structure and the extended surface loops. Anisotropic tumbling of the elongated TC14 dimer can account for the main fluctuations in relaxation rates. Loss of the bound calcium does not significantly alter the internal dynamics, suggesting that the stability of the loop region is intrinsic and not dependent on the coordination of the calcium ion. Chemical shift differences between the holo and apo form show that main structural changes occur in the calcium-binding site, but smaller structural changes are propagated throughout the molecule without affecting the overall fold. The disappearance of two resonances for residues following the conserved cis-proline 87 (which is located in the calcium-binding site) in the apo form indicates conformational change on an NMR time scale between the cis and trans configurations of this peptide bond in the absence of calcium. Possible implications of these findings for the ligand binding in C-type lectin-like domains are discussed.  相似文献   

19.
Acid sensing ion channels (ASICs) are cation-selective membrane channels activated by H+ binding upon decrease in extracellular pH. It is known that Ca2+ plays an important modulatory role in ASIC gating, competing with the ligand (H+) for its binding site(s). However, the H+ or Ca2+ binding sites involved in gating and the gating mechanism are not fully known. We carried out a computational study to investigate potential cation and H+ binding sites for ASIC1 via all-atom molecular dynamics simulations on five systems. The systems were designed to test the candidacy of some acid sensing residues proposed from experiment and to determine yet unknown ligand binding sites. The ion binding patterns reveal sites of cation (Na+ and Ca2+) localization where they may compete with protons and influence channel gating. The highest incidence of Ca2+ and Na+ binding is observed at a highly acidic pocket on the protein surface. Also, Na+ ions fill in an inner chamber that contains a ring of acidic residues and that is near the channel entrance; this site could possibly be a temporary reservoir involved in ion permeation. Some acidic residues were observed to orient and move significantly close together to bind Ca2+, indicating the structural consequences of Ca2+ release from these sites. Local structural changes in the protein due to cation binding or ligand binding (protonation) are examined at the binding sites and discussed. This study provides structural and dynamic details to test hypotheses for the role of Ca2+ and Na+ ions in the channel gating mechanism.  相似文献   

20.
Small ligands generally bind within the seven transmembrane-spanning helices of G-protein-coupled receptors, but their access to the binding pocket through the closely packed loops has not been elucidated. In this work, a model of the extracellular loops of the thyrotropin-releasing hormone (TRH) receptor (TRHR) was constructed, and molecular dynamics simulations and quasi-harmonic analysis have been performed to study the static and dynamic roles of the extracellular domain. The static analysis based on curvature and electrostatic potential on the surface of TRHR suggests the formation of an initial recognition site between TRH and the surface of its receptor. These results are supported by experimental evidence. A quasi-harmonic analysis of the vibrations of the extracellular loops suggest that the low-frequency motions of the loops will aid the ligand to access its transmembrane binding pocket. We suggest that all small ligands may bind sequentially to the transmembrane pocket by first interacting with the surface binding site and then may be guided into the transmembrane binding pocket by fluctuations in the extracellular loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号