首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli B, induced for beta-galactoside permease, can accumulate thio-methyl-beta-galactoside in the cell even at 0 degrees D. At this temperature, cells adsorb colicin K but the adsorbed colicin does not inhibit thiomethyl-beta-galactoside uptake. Inhibition by colicin K is, however, seen at 0 degrees C after exposure of the colicin K-cell complex to a high temperature: a greater degree of inhibition occurs with increasing temperature or duration or exposure. There is a transition point at around 21 degrees C in Arrhenius plots of this colicin K activation reaction. If inhibitors of energy yielding reactions are present during the heat treatment, the inhibitory action of colicin K (as measured by thiomethyl-beta-galactoside uptake after returning the colicin K-cell complex to 0 degrees C and removal of the inhibitors) is prevented. These results indicate that adsorbed colicin K is converted into the active state only in the presence of metabolic energy and that cell surface fluidity appears to be concerned in this process.  相似文献   

2.
The thermal enhancement of X-ray damage to mouse jejunum has been assessed when heating was achieved by immersion of an exteriorized loop of intestine in Krebs-Ringer solution. The results have been compared with those previously obtained following heating in situ. The primary effect of 1 hour of mild hyperthermia was to reduce the should of the crypt survival curve obtained following X-rays given alone. Thermal enhancement ratio (TER) values increased with increasing temperature, up to 42.3 degrees C, and were within the range reported for other normal tissues. However, when hyperthermia itself caused crypt loss and the contribution of hyperthermal killing to the overall tissue response was taken into account, there was little enhancement of radiation damage. There was no evidence of a large increase in TER at high temperatures, as is seen in some tumours and has been reported by Merino, Peters, Mason and Withers (1978) for intestine. It is possible that very high TER values which have previously been reported mainly reflect the heat-alone component of damage. Some of the implications of these results are discussed in relation to the combination of heat and radiation in therapy.  相似文献   

3.
The response of normal porcine fat and muscle to graduated doses of hyperthermia provided by an annularly focused acoustic source was measured. Temperatures and exposure times were varied between 43 degrees C (20-90 min), 45 and 47 degrees C (20-60 min), and 49 degrees C (20 min). Response, based on histologic grading of the treated sites 30 days after exposure, was found to correlate well when mapped against several methods of estimating thermal energy deposition. The threshold for damage production was at or near 43 degrees C. For a given temperature, a nearly exponential increase in relative tissue damage as a function of increased exposure time was found. A twofold increase in tissue damage was produced in fat relative to muscle at any given thermal dose.  相似文献   

4.
A variety of medical procedures is aimed to selectively compromise or destroy vascular function. Such procedures include cancer therapies, treatments of cutaneous vascular disorders, and temporary hemostasis during surgery. Currently, technologies such as lasers, cryosurgery and radio frequency coagulation, produce significant collateral damage due to the thermal nature of these interactions and corresponding heat exchange with surrounding tissues. We describe a non-thermal method of inducing temporary vasoconstriction and permanent thrombosis using short pulse (microseconds) electrical stimulation. The current density required for vasoconstriction increases with decreasing pulse duration approximately as t(-0.25). The threshold of electroporation has a steeper dependence on pulse duration-exceeding t(-0.5). At pulse durations shorter than 5 micros, damage threshold exceeds the vasoconstriction threshold, thus allowing for temporary hemostasis without direct damage to surrounding tissue. With a pulse repetition rate of 0.1 Hz, vasoconstriction is achieved approximately 1 min after the beginning of treatment in both arteries and veins. Thrombosis occurs at higher electric fields, and its threshold increases with vessel diameter. Histology demonstrated a lack of tissue damage during vasoconstriction, but vascular endothelium was damaged during thrombosis. The temperature increase does not exceed 0.1 degrees C during these treatments.  相似文献   

5.
The survival response of Friend erythroleukemia cells (a differentiating cell system) to heat and radiation has been examined. The Friend erythroleukemia cells (FELC) were more heat and radiation sensitive than V79 cells, and the heat and radiation survival curves possessed shoulders, showing the ability of the cells to accumulate sublethal damage. Thermal tolerance was expressed after prolonged heating at 41.0-42.0 degrees C. Thermal radiosensitization by heating at 42.0 or 45.0 degrees C was greatest for simultaneous heat and radiation treatments, and recovery occurred when the cells were incubated at 37 degrees C between the heat and radiation or radiation and heat treatments. Arrhenius analysis of the FELC heat survival data showed that the curve for thermal inactivation possessed a break at about 43.0 degrees C and that the thermal inactivation energies above and below the break point were comparable to those for V79 cells and other cell lines reported in the literature.  相似文献   

6.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

7.
Acid phosphatase activity was measured in implanted murine CaNT tumors of varying volumes. There is a clear monotonically increasing relation between acid phosphatase activity and tumor volume. Also the tumors were subjected to either induced artificial hypoxia or hyperthermia (41.0 degrees C) alone, or combined with neutron irradiation (3.8 Gy). Changes in the activity of this enzyme following radiation damage could reflect tissue damage associated with metabolic disturbances. The effect on enzyme activity after sequential hyperthermia and neutron irradiation is not synergistic, as is shown in the quantitative experimental data. This implies that the mechanisms of heat damage differ from that of neutron beam damage, as reflected by acid phosphatase activity. The CaNT tumor was also shown to be thermosensitive after administration of mitoxantrone. Finally, the role of exogenous ATP was shown to provide heat protection by modification of those thermal effects resulting in the activity of acid phosphatase. The augmentation of this hydrolytic enzyme probably represents initial metabolic damage in the tumor after different modalities of radiation alone, or combined with mitoxantrone and exogenous ATP.  相似文献   

8.
Inactivation of diploid yeast by hyperthermia has been studied. DO and Dq decrease with temperature for euoxic and anoxic conditions. The Arrhenius plot shows a break at 52 degrees C; the inactivation energies above and below this temperature are 153 and 94kcal/mol respectively. Hyperthermia (20 min at 51 degrees C) also potentiates the lethal action of gamma rays in diploid yeast cells under both euoxic and anoxic conditions. The interaction between hyperthermic and radiation damage appears to be largely at the sublethal level. The euoxic cells, the hyperthermic potentiation decreases with increasing time between the application of hyperthermia and radiation, being completely lost after 24 hours. However, in the anoxic cells there was no decrease in the hyperthermic potentiation with increasing time interval. These results suggest that yeast cells are capable of repairing hyperthermic sublethal damage, but require oxygen to do so. Thus there is a similarity in the process of repair of sublethal damage caused by ionizing radiation on the one hand and hyperthermia on the other.  相似文献   

9.
A bioheat transfer approach is proposed to study thermal damage in biological tissues caused by laser radiation. The laser light propagation in the tissue is first solved by using a robust seven-flux model in cylindrical coordinate system. The resulting spatial distribution of the absorbed laser energy is incorporated into the bioheat transfer equation for solving temperature response. Thermal damage to the tissue is assessed by the extent of denatured protein using a rate process equation. It is found that for the tissue studied, a significant protein denaturation process would take place when temperature exceeds about 53 degrees C. The effects of laser power, exposure time and beam size as well as the tissue absorption and scattering coefficients on the thermal damage process are examined and discussed. The laser conditions that cause irreversible damage to the tissue are also identified.  相似文献   

10.
M E Jenkins  T C Suzuki    D W Mount 《Plant physiology》1997,115(4):1351-1358
The uvh6 mutant of Arabidopsis was previously isolated in a screen for increased sensitivity to ultraviolet (UV) radiation. uvh6 mutant plants were killed by incubation at 37 degrees C for 4 d, a treatment not lethal to wild-type plants. Furthermore, under permissive conditions, uvh6 plants were yellow-green with an approximately one-third lower chlorophyll content. Genetic analysis of the uvh6 mutant strongly suggested that all three mutant phenotypes were due to mutation at the same genetic locus. To understand UVH6 function more fully, the response of wild-type plants to growth at elevated temperatures and exposure to UV radiation was analyzed. Wild-type plants grown at 30 degrees C were as UV-hypersensitive and yellow-green as uvh6 mutant plants grown at 24 degrees C. Mutant uvh6 plants induced heat-shock protein HSP21 at a lower threshold temperature than wild-type plants, indicating that the uvh6 mutant was exhibiting signs of heat stress at a 4 to 5 degrees C lower temperature than wild-type plants. We propose the UV damage and heat induce a common stress response in plants that leads to tissue death and reduced chloroplast function, and that the UVH6 product is a negative regulator of this response.  相似文献   

11.
The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 degrees C. As a result, the 43 degrees C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 degrees C. At temperatures below 42 degrees C, the curve again deviated. At supranormal temperatures of 42 degrees C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 degrees C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 degrees C, so that the "intrinsic" sensitivity is modulated while being assessed.  相似文献   

12.
Effects of temperature on glucose transport in fat cells were studied. In this system, the basal (no insulin) glucose transport activity was higher at approximately 25-30 degrees C than at 37 degrees C, as previously reported (Vega, F. V., and Kono, T. (1979) Arch. Biochem. Biophys. 192, 120-127). The stimulatory effect of low temperature (or the insulin-like effect) was reversible and apparently required metabolic energy for both its forward and reverse reactions. By lowering the ATP level with 2,4-dinitrophenol, one could separately determine the insulin-like stimulatory effect of low temperature and its inhibitory effect on the transport process itself. The maximum level of stimulation by low temperature was greater at 10 degrees C than at 25-30 degrees C, but the rate of stimulation was considerably slower at 10 degrees C than at 25-30 degrees C. When cells were exposed to low temperature, the glucose transport activity in the plasma membrane-rich fraction was increased, while that in the Golgi-rich fraction was decreased. The Arrhenius plot of the basal glucose transport activity determined in the presence of dinitrophenol was apparently linear from 10 to 37 degrees C and parallel to that of the plus insulin activity measured either in the presence or absence of dinitrophenyl. Insulin itself slowly stimulated the glucose transport activity at 10 degrees C. These results are consistent with the view that (a) low temperature, like insulin, induces translocation of the glucose transport activity from an intracellular storage site to the plasma membrane, (b) insulin stimulates glucose transport activity without changing its activation energy, and (c) subcellular membranes do not entirely stop their movement at a low temperature, e.g, at 10 degrees C.  相似文献   

13.
Previous studies in marine ectotherms from a latitudinal cline have led to the hypothesis that eurythermal adaptation to low mean annual temperatures is energetically costly. To obtain more information on the trade-offs and with that the constraints of thermal adaptation, mitochondrial functions were studied in subpolar lugworms (Arenicola marina L.) adapted to summer cold at the White Sea and were compared with those in boreal specimens from the North Sea, either acclimatized to summer temperatures or to winter cold. During summer, a comparison of mitochondria from subpolar and boreal worms revealed higher succinate oxidation rates and reduced Arrhenius activation energies (Ea) in state 3 respiration at low temperatures, as well as higher proton leakage rates in subpolar lugworms. These differences reflect a higher aerobic capacity in subpolar worms, which is required to maintain motor activity at low but variable environmental temperatures--however, at the expense of an elevated metabolic rate. The lower activity of citrate synthase (CS) found in subpolar worms may indicate a shift in metabolic control within mitochondria. In contrast, acclimatization of boreal lugworms to winter conditions elicited elevated mitochondrial CS activities in parallel with enhanced mitochondrial respiration rates. With falling acclimation temperatures, the significant Arrhenius break temperature in state 3 respiration (11 degrees C) became insignificant (5 degrees C) or even disappeared (0 degrees C) at lower levels of Arrhenius activation energies in the cold, similar to a phenomenon known from hibernating vertebrates. The efficiency of aerobic energy production in winter mitochondria rose as proton leakage in relation to state 3 decreased with cold acclimation, indicated by higher respiratory control ratio values and increased adenosine diphosphate/oxygen (ADP/O) ratios. These transitions indicate reduced metabolic flexibility, possibly paralleled by a loss in aerobic scope and metabolic depression during winter cold. Accordingly, these patterns contrast those found in summer-active, cold-adapted eurytherms at high latitudes.  相似文献   

14.
The effect of hyperthermia on radiation-induced carcinogenesis   总被引:1,自引:0,他引:1  
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.  相似文献   

15.
It has been shown that in the enzyme preparations (EP) from normal brain tissue (NBT) a typical break on the Arrhenius plot appeared at 20-22 degrees C, nH for Na+ and K+ exceeding 1.7 and 1.4, respectively. In EP from tumoural brain tissue (TBT) no break on the Arrhenius plot at 20-22 degrees C was revealed, but it appeared at 27.5 + 30.5 degrees C. The nH for Na+ with Na+,K+-ATPase from TBT was only 0.9, but the cooperative binding of K+ was preserved (nH = 1.3). Electrophoregrams (EP) from TBT showed additional protein bands. The urea and digitonin treatment of EP from NBT induced a break on the Arrhenius plot at 27.5-30.5 degrees C. It is suggested that the break at 27.5-30.5 degrees C is, probably, accompanied by local changes in the conformation of protein components of the enzyme.  相似文献   

16.
Pan B  Abel J  Ricci MS  Brems DN  Wang DI  Trout BL 《Biochemistry》2006,45(51):15430-15443
The effect of protein conformation on the rate of chemical degradation is poorly understood. To address the role of structure on chemical degradation kinetics, comparative oxidation studies of methionine residues in recombinant human granulocyte colony-stimulating factor (rhG-CSF) were performed. The kinetics of oxidation of methionine residues by hydrogen peroxide (H2O2) in rhG-CSF and corresponding chemically synthesized peptides thereof was measured at different temperatures. To assess structural effects, equilibrium denaturation experiments also were conducted on rhG-CSF, yielding the free energy of unfolding as a function of temperature. A comparison of the relative rates of oxidation of methionine residues in short peptides with those of corresponding methionine residues in rhG-CSF yields an understanding of how protein tertiary structure affects oxidation reactions. For the temperature range that was studied, 4-45 degrees C, the oxidation rate constants followed an Arrhenius equation quite well, suggesting the lack of temperature-induced local structural perturbations that affect chemical degradation rates. One of the four methionine residues, Met 122, exhibited an activation energy significantly different from that of the corresponding peptide. Extrapolation of kinetic data predicts non-Arrhenius behavior around the melting temperature. Three phenomenological models based on different mechanisms are discussed, and an application to shelf life prediction of pharmaceuticals is presented.  相似文献   

17.
1. Embryos and hatchlings of the duck and pigeon were exposed to a lowered temperature for 6 hr. The oxygen consumption (MO2) was measured before and after cooling and the ratio of the two was compared with that predicted for a temperature coefficient of 2 (Arrhenius value). 2. Late prenatal ducks kept the MO2 above the Arrhenius value at 28 degrees C, while the MO2 of pigeon hatchlings became the same as the Arrhenius value even at 32 degrees C. 3. Thus, incipient homeothermic ability appears in the duck during prenatal development, but it is not evident in the pigeon even after emergence from the shell. The precocial chicken and semi-precocial noddy previously studied are intermediate in their metabolic response between the duck and the pigeon.  相似文献   

18.
The influence of temperature on activity assays of the isoenzymes of L-aspartic aminotransferase in described. For this purpose, isolated human isoenzymes were added to inactivated serum. Half-saturation constants were determined at 17.8 degrees C, 25 degrees C, 30 degrees C, and 37 degrees C, and the substrate saturation and pH curves were recorded. The cytoplasmatic (c) and mitochondrial (m) GOT showed temperature-dependent differences in the half-saturation constants for the substrates L-aspartate and 2-oxoglutarate. For both isoenzymes pH 7.4 is considered the optimum regardless of the temperature of measurement, and Tris-HCl is the optimal buffer. In the Arrhenius plot there is a bent at 27 degrees C for both isoenzymes. Thermal denaturation as a possible reason for this deviation from the linearity in the Arrhenius plot could be ruled out.  相似文献   

19.
Based on the analysis of clonogenic survival data for human colonic adenocarcinoma cells (WiDr) after a single heating, a new model is proposed to describe cell survival after hyperthermia quantitatively. The effects of heat are explained as heat-induced cell damage assuming a first-order (single-hit) and a second-order (cumulative damage) process. Thus cell survival at a specified temperature can be described by the linear-quadratic (LQ) model. The proposed model is based on an alternative definition of the (single) thermal dose, given as the (normalized) product of heating time and a specified nonlinear function of the increase in temperature (relative to a threshold temperature) to be interpreted as the thermal dose rate. In further analogy to the modeling of the effects of low-dose-rate radiation, an inherent capacity of the cells to repair sublethal damage is assumed, and these effects are quantified by the usual g factor measuring incomplete repair effects. The model defines thermal dose-response and isoeffect dose relationships, enabling a direct (i. e. single-step) analysis of the available thermal response data. Additionally, the analysis of our data based on heating times in the range from 0 to 360 min and temperatures from 41 to 46 degrees C and covering a broad spectrum of different densities of cells seeded for colony formation did not yield any evidence of the existence of a breaking point usually derived from Arrhenius plots based on the single-hit, multitarget model and the Arrhenius equation. The model includes no specific assumptions describing the development of thermotolerance, which can be assumed to be negligible under our experimental conditions. The proposed thermal dose-response model correlates satisfactorily with the in vitro survival data for WiDr adenocarcinoma cells.  相似文献   

20.
The effect of temperature on the rates of monoxygenase reactions was studied with microsomes prepared from phenobarbital pretreated rats. The rates of the N-demethylation of ethylmorphine, benzphethamine, aminopyrine, and p-nitroanisole were studied. Breaks at temperatures around 24 degrees C were observed in the Arrhenius plots of all these reactions. The energy of activation of these reactions has values of 10-12 and 19-21 kcal per mol at temperature ranges above and below the break temperature, respectively. The break, however, was not observed if 30% glycerol was added to the microsomes. The Arrhenius plot of the microsomal NADPH-cytochrome c reductase activity also did not show any break. The implications of these observations in relationship to the fluidity of the membrane, the translational mobility of membrane enzymes, and the rate of monoxygenase reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号