首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U937 human myeloid leukemia cells are induced to apoptosis by tumour necrosis factor (TNF) plus cycloheximide (CHX). We have analysed the effect of various inhibitors of the arachidonic acid (AA) metabolism on several features of this process. The formation of high molecular weight and oligonucleosomal DNA fragments as well as nuclear fragmentation were reduced by inhibitors of 5-lipoxygenase (BWA4C and BWB70C), 5-LO activating protein (MK-886), and cytosolic PLA2 (AACOCF3). None of these agents blocked the morphological changes detected by microscopy or flow cytometry, phosphatidylserine exposure on the cell surface or Caspase 3-like activation. AA also induced nuclear fragmentation at a concentration of 1-20 microM. However, the mechanisms by which these inhibitors act, remain unexplained since there was no 5-LO expression in the U937 cells and no AA release followed their stimulation with TNF plus CHX.  相似文献   

2.
5,8,11,14-eicosatetraynoic acid (ETYA), a widely used inhibitor of cyclooxygenase and lipoxygenase, inhibited the incorporation of 14C-arachidonic acid into cell lipids of the murine thymoma EL4 whereas oleic acid had no effect. Inhibition appeared to result from the ability of ETYA to compete with arachidonic acid for esterification enzymes and to be itself incorporated into cell lipids. The positional specificity for ETYA incorporation was similar to that of arachidonic acid. ETYA, but not oleic acid competed with arachidonate for activation by a selective arachidonoyl CoA synthetase in lymphocytes. This may explain in part the apparent specificity of effects seen on incorporation into whole cells. In addition ETYA, unlike other arachidonate analogs tested previously, caused significant inhibition of the nonselective acyl CoA synthetase in lymphocytes. These results are discussed with respect to the use of ETYA to examine the role of intrinsic arachidonic acid metabolism in cellular processes.  相似文献   

3.
Since the presence of serum in culture media has been shown to alter prostaglandin production, as well as to interfere with the action of anti-inflammatory drugs, we have studied the effect of dexamethasone, a potent steroidal anti-inflammatory drug, on the metabolism of arachidonic acid by human monocyte-like cells (U937) grown in a fully defined medium. Under these culture conditions, dexamethasone (10(-6) M, 24 h) induced a marked stimulation of the release of unmetabolized arachidonic acid into the culture medium. The steroid also induced an inhibition of cell proliferation which became significant only after 48 h of treatment. The accumulation of arachidonic acid in the medium after steroid treatment was associated with a significant inhibition of cell acyltransferase activity, suggesting that steroids may also act upon arachidonic acid metabolism at sites other than those of phospholipase activity.  相似文献   

4.
Choi IY  Park JW 《Free radical research》2003,37(10):1099-1105
Heat shock may increase oxidative stress due to increased production of reactive oxygen species (ROS) and/or the promotion of cellular oxidation events. Cytosolic NADP
+
-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against heat shock in U937 cells was investigated in control and cells treated with oxlalomalate, a competitive inhibitor of ICDH. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of ROS, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin in U937 cells treated with oxalomalate. These results suggest that ICDH plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of ROS.  相似文献   

5.
The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells.  相似文献   

6.
Microgram concentrations of 5,8,11,14-eicosatetraynoic acid (TYA) inhibited the spontaneous increases in tone which develop in isolated guinea-pig ileum and also inhibited intestinal motility in anesthetized guinea-pigs. TYA failed to block contractions of the ileum induced by various agonists including PGE2. It did, however, inhibit both the spontaneous liberation of spasmogenic substances from isolated ileum and the biosynthesis of PGE2 from arachidonic acid. It is concluded that the inhibitory effects of TYA were exerted through inhibition of PG biosynthesis. Studies with antagonist drugs (atropine, methysergide and pyribenzamine) confirmed that the effects of intestinal PGs are, in the guinea-pig, largely exerted through a cholinergic mechanism.  相似文献   

7.
Nine acetylenic acids were evaluated to determine what structural features are required for selective inhibition of platelet lipoxygenase. Both 4,7,10,13-icosatetraynoic acid and 5,8,11,14-henicosatetraynoic acid inhibited the synthesis of 12-L-hydroxy-5,8,10,14-icosatetraenoic acid (HETE) more than 95 percent without significantly altering the production of either thromboxane B2 or 12-L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). The ID50 concentrations (microM) for inhibiting the synthesis of thromboxane B2 and HETE were respectively 51 and 0.46 with 4,7,10,13-icosatetraynoic acid while similar concentrations of 64 and 0.31 were found for 5,8,11,14-henicosatetraynoic acid.  相似文献   

8.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.  相似文献   

9.
Arachidonic acid (AA) participates in a reacylation/deacylation cycle of membrane phospholipids, the so-called Lands cycle, that serves to keep the concentration of this free fatty acid in cells at a very low level. To manipulate the intracellular AA level in U937 phagocytes, we have used several pharmacological strategies to interfere with the Lands cycle. We used inhibitors of the AA reacylation pathway, namely thimerosal and triacsin C, which block the conversion of AA into arachidonoyl-CoA, and a CoA-independent transacylase inhibitor that blocks the movement of AA within phospholipids. In addition, we used cells overexpressing group VIA phospholipase A(2), an enzyme with key roles in controlling basal fatty acid deacylation reactions in phagocytic cells. All of these different strategies resulted in the expected increase of cellular free AA but also in the induction of cell death by apoptosis. Moreover, when used in combination with any of the aforementioned drugs, AA itself was able to induce apoptosis at doses as low as 10 muM. Blocking cyclooxygenase or lipoxygenases had no effect on the induction of apoptosis by AA. Collectively, these results indicate that free AA levels within the cells may provide an important cellular signal for the onset of apoptosis and that perturbations of the mechanisms controlling AA reacylation, and hence free AA availability, may decisively affect cell survival.  相似文献   

10.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

11.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

12.
Copper (Cu) deficiency suppresses macrophage activities in animals and humans. Our previous studies indicated that the induction of Cu deficiency in differentiated U937 monocytic cells impairs respiratory burst and bactericidal activities and lipopolysaccharide-mediated secretion of inflammatory mediators. The current investigation examined the roles of Cu in the monocytic differentiation process. Human U937 promonocytic cells were exposed to a high affinity Cu chelator (5 microM 2,3,2-tetraamine [tet]) for 24 hr before inducing differentiation by treatment with 1,25-dihydroxyvitamin D3 plus interferon-gamma (DI). This procedure decreased cell Cu by 55% without compromising cellular Zn, Fe, or general metabolic activities. Lower Cu status significantly attenuated the expression of maturation markers Mac-1 (CD11b), ICAM-1 (CD54), and LPS-R (CD14). This change was associated with a marked suppression in respiratory burst activity and killing of Salmonella. To examine if the adverse effect of inadequate Cu on the DI-induced differentiation represented a more general defect, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA). Lower Cu status also suppressed PMA-mediated differentiation of U937 cells. Supplemental Cu, but not Zn or Fe, blocked the tet-induced declines in cell Cu, expression of maturation markers, and respiratory burst and bactericidal activities. These results demonstrate that Cu is essential for the monocytic differentiation process that contributes to the competency of the host's defense system.  相似文献   

13.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

14.
Omega-3 polyunsaturated fatty acids (PUFA) are increasingly finding use as treatments for a variety of medical conditions. PUFA supplementation can, however, result in increased oxidative stress causing elevated turnover rate of membrane phospholipids, impairment of membrane integrity and increased formation of inflammatory mediators. The aim of this study was to determine which antioxidant compounds were most effective in ameliorating the stimulation of phospholipid turnover by oxidative stress. U937 cells were supplemented with eicosapentaenoic acid and either ascorbic acid, alpha-tocopherol, beta-carotene or astaxanthin prior to being challenged with oxidant. Although all antioxidants were found to be effective in decreasing oxidant-stimulated peroxide formation, only alpha-tocopherol significantly decreased oxidant-stimulated release of 3H-labeled arachidonic acid (AA), while ascorbic acid markedly increased release. All antioxidants except alpha-tocopherol decreased oxidant-stimulated 3H-AA uptake. Our data suggest that antioxidants are not equally effective in combating the effects of oxidative stress upon membrane phospholipid turnover, and that optimal protection will require mixtures of antioxidants.  相似文献   

15.
We present here a morphological, cytochemical and biochemical study of the macrophagic differentiation of human pro-monocytic U937 cells exposed to moderate intensity (6 mT) static magnetic fields (MF). It was found that the following substances induced differentiation in U937 cells to a progressively lower degree: 50 ng/mL 12-0-tetradecanoyl-13-phorbol acetate (TPA), low concentration of glutamine (0,05 mM/L), 10% dimethyl sulfoxide (DMSO) and 100 mM/L Zn++. Differentiated U937 cells shift from a round shape to a macrophage-like morphology, from suspension to adhesion growth and acquire phagocytotic activity, the cytoskeleton adapting accordingly. Exposure to static MF at 6 mT of intensity decreases the degree of differentiation for all differentiating molecules with a consequent fall in cell adhesion and increased polarization of pseudopodia and cytoplasmic protrusions. Differentiation alone, or in combination with exposure to static MFs, affects the distribution and quantity of cell surface sugar residues, the surface expression of markers of macrophage differentiation, and phagocytotic capability. Our results indicate that moderate-intensity static MFs exert a considerable effect on the process of macrophage differentiation of pro-monocytic U937 cells and suggest the need for further studies to investigate the in vivo possible harmful consequences of this.  相似文献   

16.
Cultured aortic smooth muscle cells originated from healthy and atherosclerotic rabbits produce prostaglandins (namely prostacyclin) at a basal state. Prostaglandin secretion is dramatically reduced in atherosclerotic cells. This impairment was not correlated with any alteration of acyl hydrolase activities and probably involved a decrease of cyclooxygenase activities.  相似文献   

17.
Sodium vanadate (11 μM) amplified the PGI2 production of rat liver cells (the C-9 cell line) incubated with thrombin, platelet activating factor, lysine-vasopressin, the Ca2+-ionophore A-23187, interleukin-1ß, 12-tetradecanoylphorbol-13-acetate, teleocidin, epidermal growth factor, palytoxin, thapsigargin and colchicine but not that stimulated by exogenous arachidonic acid. Sodium vanadate (2.2 μM) also amplified PGF production of dog kidney cells (the MDCK cell line) incubated with norepinephrine and, at 0.4 μM, PGI2 production of bovine aorta smooth muscle cells stimulated by serotonin. Sodium vanadate (55 μM) did not affect production of PGE2 and PGF in rat basophil leukemia cells (the RBL-1 cell line) stimulated by the Ca2+-ionophore A-23187, but did inhibit synthesis of peptide-containing leukotrienes and 12-hydroxyeicosatetraenoic acid. When used with cultured cells at micromolar concentrations, vanadate is known to inhibit protein tyrosine-phosphate phosphatases. These results suggest that in some cells deesterification of lipids is positively regulated, at least in part, by phosphorylation of tyrosine whereas in leukocytes, lipoxygenase activities are negatively regulated, at least in part, by phosphorylation of tyrosine.  相似文献   

18.
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. In breast cancer cells, the free fatty acid oleic acid (OLA) induces proliferation, migration, invasion and an increase of MMP-9 secretion. However, the role of OLA on Stat5 activation and the participation of COX-2 and LOXs activity in Stat5 activation induced by OLA remain to be investigated. We demonstrate here that stimulation of MDA-MB-231 breast cancer cells with 100 μM OLA induces Stat5 phosphorylation at Tyr-694 and an increase of Stat5–DNA complex formation. The Stat5 DNA-binding activity requires COX-2, LOXs, metalloproteinases and Src activities. In addition, OLA induces cell migration through a Stat5-dependent pathway. In summary, our findings establish that OLA induces cell migration through a Stat5-dependent pathway and that Stat5 activation requires AA metabolites in MDA-MB-231 breast cancer cells.  相似文献   

19.
The addition of arachidonic acid (20:4), but not other fatty acids, including the structurally similar eicosapentaenoic acid (20:5), induced specific morphological changes in cultured endothelial cells derived from bovine aorta and pulmonary artery. Cells exhibited a time- and dose-dependent change from their normal, epithelioid morphology to become elongated, polygonal, and spindle-shaped. Cells isolated from aorta appeared more sensitive to these changes than those from pulmonary artery. The effect was observed as early as 12 h after exposure to 20:4, required 48 h for maximal expression, and could be reversed in 2-5 h after change to normal media. The morphological alteration was not observed in cells treated with leukotrienes or PGE2. When cells were pretreated with ibuprofen, aspirin, or indomethacin to block prostaglandin synthesis and then exposed to 20:4, the dose-response effect was shifted to the left. This increased sensitivity to 20:4 suggests either a direct effect of 20:4 on cell morphology or an indirect effect due to metabolites of 20:4 which are not dependent on the cyclooxygenase pathway.  相似文献   

20.
Sodium salicylate is inactive both on cyclo-oxygenase and lipoxygenase prepared from human platelets. It prevents the inhibition of cyclo-oxygenase induced by aspirin, but does not counteract the inhibitory effect of 5,8,11,14-eicosatetraynoic acid on both enzymes. It also fails to interfere with the inhibitory activity of nordihydroguaiaretic acid on lipoxygenase. These data indicate that, unlike eicosatetraynoic acid, non-steroidal anti-inflammatory drugs interact with a site on cyclo-oxygenase distinct from the catalytic site, although related to it. Such a supplementary binding site is lacking on lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号