首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fission yeast B-type cyclin functioning early in the cell cycle.   总被引:24,自引:0,他引:24  
A Bueno  H Richardson  S I Reed  P Russell 《Cell》1991,66(1):149-159
We have cloned a fission yeast gene, cig1+, encoding a 48 kd product that is most similar to cyclin B proteins. The cig1+ protein has a "cyclin box" approximately 40% identical to B-type cyclins of other species, but lacks the "destruction box" required for proteolysis of mitotic cyclins. Deletion of cig1+ had no observable effect on cell viability or progression through G2 or M phase, but instead caused a marked lag in the progression from G1 to S phase. G1 constituted approximately 70% of the cell cycle in cig1 deletion strains, as compared with less than 10% in cig1+ strains. Constitutive cig1+ overexpression was lethal, causing cessation of growth and arrest in G1. Expression of cig1+ failed to rescue an S. cerevisiae strain lacking CLN Start cyclins. Thus, cig1+ identifies a new class of B-type cyclin acting in G1 or S phase that appears to be functionally distinct from all previously described cyclin proteins.  相似文献   

2.
Eukaryotic cells coordinate cell size with cell division by regulating the length of the G1 and G2 phases of the cell cycle. In fission yeast, the length of the G1 phase depends on a precise balance between levels of positive (cig1, cig2, puc1, and cdc13 cyclins) and negative (rum1 and ste9-APC) regulators of cdc2. Early in G1, cyclin proteolysis and rum1 inhibition keep the cdc2/cyclin complexes inactive. At the end of G1, the balance is reversed and cdc2/cyclin activity down-regulates both rum1 and the cyclin-degrading activity of the APC. Here we present data showing that the puc1 cyclin, a close relative of the Cln cyclins in budding yeast, plays an important role in regulating the length of G1. Fission yeast cells lacking cig1 and cig2 have a cell cycle distribution similar to that of wild-type cells, with a short G1 and a long G2. However, when the puc1(+) gene is deleted in this genetic background, the length of G1 is extended and these cells undergo S phase with a greater cell size than wild-type cells. This G1 delay is completely abolished in cells lacking rum1. Cdc2/puc1 function may be important to down-regulate the rum1 Cdk inhibitor at the end of G1.  相似文献   

3.
The molecular networks regulating basic physiological processes in a cell can be converted into mathematical equations (eg differential equations) and solved by a computer. The division cycle of eukaryotic cells is an important example of such a control system, and fission yeast is an excellent test organism for the computational modelling approach. The mathematical model is tested by simulating wild-type cells and many known cell cycle mutants. This paper describes an example where this approach is useful in understanding multiple rounds of DNA synthesis (endoreplication) in fission yeast cells that lack the main (B-type) mitotic cyclin, Cdc13. It is proposed that the key physiological variable driving progression through the cell cycle during balanced growth and division is the mass/DNA ratio, rather than the mass/nucleus ratio.  相似文献   

4.
5.
The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clb1 clb3 clb4 triple mutant was viable, suggesting a key role for CLB2. The inviable multiple clb mutants appeared to have a defect in mitosis. Conditional clb mutants arrested as large budded cells with a G2 DNA content but without any mitotic spindle. Electron microscopy showed that the spindle pole bodies had duplicated but not separated, and no spindle had formed. This suggests that the Clb/Cdc28 kinase may have a relatively direct role in spindle formation. The two groups of Clbs may have distinct roles in spindle formation and elongation.  相似文献   

6.
Mammalian cells respond to stress by accumulating or activating a set of highly conserved proteins known as heat-shock proteins (HSPs). Several of these proteins interfere negatively with apoptosis. We show that the small HSP known as Hsp27 inhibits cytochrome-c-mediated activation of caspases in the cytosol. Hsp27 does not interfere with granzyme-B-induced activation of caspases, nor with apoptosis-inducing factor-mediated, caspase-independent, nuclear changes. Hsp27 binds to cytochrome c released from the mitochondria to the cytosol and prevents cytochrome-c-mediated interaction of Apaf-1 with procaspase-9. Thus, Hsp27 interferes specifically with the mitochondrial pathway of caspase-dependent cell death.  相似文献   

7.
8.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

9.
10.
Cell cycle control genes in fission yeast and mammalian cells   总被引:20,自引:0,他引:20  
  相似文献   

11.
12.
The suitability of fission yeast as a model for understanding the eukaryotic cell cycle has been validated in five years of exciting developments. We review recent advances in understanding the nature of the controls that regulate progression through the cell cycle and the coordination of DNA replication and mitosis.  相似文献   

13.
14.
15.
16.
T Enoch  P Nurse 《Cell》1990,60(4):665-673
Entry into mitosis in fission yeast is controlled by the p34cdc2 protein kinase, which is activated by cdc25+ and inhibited by wee1+. In "wee" mutants one or the other of these controls is circumvented resulting in advancement of mitosis. We report that dependence of mitosis on DNA synthesis is lost in wee mutants in which cdc25+ control is circumvented either by mutations in cdc2+ or by overproduction of cdc25+. In contrast, dependence is maintained when the wee1+ control is bypassed. We propose that cdc25+ activity requires completion of earlier cell-cycle events such as DNA synthesis, and thus links p34cdc2 kinase activation to completion of these earlier events. Constitutive expression of cdc25+ homologs could explain why mitosis is not dependent on DNA replication in some early embryos.  相似文献   

17.
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.  相似文献   

18.
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.  相似文献   

19.
20.
Cyclins bind and activate cyclin-dependent kinases that regulate cell cycle progression in eukaryotes. Cell cycle control in Trypanosoma brucei was analyzed in the present study. Genes encoding four PHO80 cyclin homologues and three B-type cyclin homologues but no G1 cyclin homologues were identified in this organism. Through knocking down expression of the seven cyclin genes with the RNA interference technique in the procyclic form of T. brucei, we demonstrated that one PHO80 homologue (CycE1/CYC2) and a B-type cyclin homologue (CycB2) are the essential cyclins regulating G1/S and G2/M transitions, respectively. This lack of overlapping cyclin function differs significantly from that observed in the other eukaryotes. Also, PHO80 cyclin is known for its involvement only in phosphate signaling in yeast with no known function in cell cycle control. Both observations thus suggest the presence of simple and novel cell cycle regulators in trypanosomes. T. brucei cells deficient in CycE1/CYC2 displayed a long slender morphology, whereas those lacking CycB2 assumed a fat stumpy form. These cells apparently still can undergo cytokinesis generating small numbers of anucleated daughter cells, each containing a single kinetoplast known as a zoid. Two different types of zoids were identified, the slender zoid derived from reduced CycE1/CYC2 expression and the stumpy zoid from CycB2 deficiency. This observation indicates an uncoupling between the kinetoplast and the nuclear cycle, resulting in cell division driven by kinetoplast segregation with neither a priori S phase nor mitosis in the trypanosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号