首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated whether or not the amyloid-beta protein (Abeta) peptide itself spontaneously generates free radicals using electron spin resonance (ESR) spectroscopy while also monitoring the aggregational state of Abeta and Abeta-induced cytotoxicity. The present results demonstrated a four-line spectrum in the presence of both Abeta40 and Abeta42 with Ntert-butyl-alpha-phenylnitrone (PBN), but not in the presence of PBN alone in phosphate-buffered saline (PBS). The fact that the four-line spectrum obtained for the Abeta/PBN in PBS was completely abolished in the presence of the iron-chelating agent Desferal demonstrated the observed four-line spectrum to be iron-dependent. The present study also revealed that either Abeta40 or Abeta42 with PBN in phosphate buffer (PB) did not produce any definite four-line spectrum. Both a thioflavine-T (Th-T) fluorometric assay and circular dichroism (CD) spectroscopy showed the amyloid fibril formation of Abeta in PBS to be much higher than that of Abeta in PB. Moreover, Abeta-induced cytotoxicity assays showed Abeta incubated in PBS to be more cytotoxic than that incubated in PB. These results thus suggest that Abeta-associated free radical generation is strongly influenced by the aggregational state of the peptides.  相似文献   

2.
Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  相似文献   

3.
There is increasing evidence that microglial activation has pathogenic influence on Alzheimer's disease. According to in vitro studies, microglia activated by amyloid-beta (Abeta) peptides have been reported to damage or kill neurons by the release of neurotoxic molecules such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta, nitric oxide or reactive oxygen species. Although the relationship between the aggregational state of Abeta peptides and their neurotoxic activities has been well investigated, little is known about the relationship between the aggregational state of Abeta peptides and their ability to induce microglial activation. In the present study, we thus performed both structural and biochemical studies to clarify the relationship between the aggregational state of Abeta peptides and their ability to activate microglia. Our results have shown that, in the presence of interferon-gamma, the Abeta25-35(M(35)Nle) peptide had almost the same potency of activating microglia and producing TNF-alpha as the Abeta25-35 peptide on both protein and mRNA levels, in spite of the fact that former peptide represented much less amyloid fibril formation than the latter in a thioflavine-T fluorometric assay. These results suggest that Abeta fibril formation is not necessarily required for microglial activation by the peptides.  相似文献   

4.
Nitric oxide (NO) is a free radical with multiple functions in the nervous system. NO plays an important role in the mechanisms of neurodegenerative diseases including Alzheimer's disease. The main source of NO in the brain is an enzymatic activity of nitric oxide synthase (NOS). The aim of the present study was to analyze the expression and activity of both neuronal (nNOS) and inducible (iNOS) isoenzymes in the cerebral cortex and hippocampus of rats after intracerebroventricular administration of amyloid-beta (A beta) peptide fragment A beta(25-35). NADPHd histochemistry as well as immunohistochemistry were also used to investigate nNOS and iNOS expression in rat brain. The data presented here show that A beta(25-35) did not influence levels of nNOS or iNOS mRNA or protein expression in both structures studied. A beta(25-35) activated nNOS in the cerebral cortex and hippocampus without effect on iNOS activity. A beta(25-35) decreased the number of NADPHd-expressing neurons in the neocortex, but it did not significantly influence the number NADPHd-positive cells in the hippocampus. The peptide had no effect on the number of nNOS containing cells. We hypothesize that increased synthesis of NO induced by A beta(25-35) is related to qualitative alterations of nNOS molecule, but not to changes in NOS protein expression.  相似文献   

5.
α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5-12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC(50) = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with K(i) = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.  相似文献   

6.
Redox changes within neurones are increasingly being implicated as an important causative agent in brain ageing and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). Cells have developed a number of defensive mechanisms to maintain intracellular redox homeostasis, including the glutathione (GSH) system and antioxidant enzymes. Here we examine the effects of N-acetyl-L-cysteine (NAC) on beta-amyloid (A beta) secretion and tau phosphorylation in SHSY5Y neuroblastoma cells after exposure to oxidative stress inducing/cytotoxic compounds (H(2)O(2), UV light and toxic A beta peptides). A beta and tau protein are hallmark molecules in the pathology of AD while the stress factors are implicated in the aetiology of AD. The results show that H(2)O(2), UV light, A beta 1-42 and toxic A beta 25-35, but not the inactive A beta 35-25, produce a significant induction of oxidative stress and cell cytotoxicity. The effects are reversed when cells are pre-treated with 30 mM NAC. Cells exposed to H(2)O(2), UV light and A beta 25-35, but not A beta 35-25, secrete significantly higher amounts of A beta 1-40 and A beta 1-42 into the culture medium. NAC pre-treatment increased the release of A beta 1-40 compared with controls and potentiated the release of both A beta 1-40 and A beta 1-42 in A beta 25-35-treated cells. Tau phosphorylation was markedly reduced by H(2)O(2) and UV light but increased by A beta 25-35. NAC strongly lowered phospho-tau levels in the presence or absence of stress treatment.  相似文献   

7.
It is suggested that the fibrillar amyloid beta peptide (A beta) in brain plays a direct role in neurodegeneration in Alzheimer's disease, probably through activation of reactive oxygen species formation. Free radicals and numerous neurotoxins elicit DNA damage that subsequently activates poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30). In this study the effect of neurotoxic fragment (25-35) of full length A beta peptide on PARP activity in adult and aged rat hippocampus was investigated. In adult (4 month old) rat hippocampus the A beta 25-35 peptide significantly enhanced PARP activity by about 80% but had no effect on PARP activity in cerebral cortex and in hippocampus from aged (24-27 month old) rats. The effect of A beta peptide was reduced by half by the nitric oxide synthase inhibitor N-nitro-L-arginine. Stimulation of glutamate receptor(s) itself enhanced PARP activity by about 80% in adult hippocampus. However, A beta 25-35 did not exert any additional stimulatory effect. These results indicate that A beta, through NO and probably other free radicals, induces activation of DNA bound PARP activity exclusively in adult but not in aged hippocampus.  相似文献   

8.
Alpha-phenyl-tert-butylnitrone (PBN) is an effective spin trapping agent by reacting with and stabilizing free radical species. Reactive oxygen species (ROS) have been implicated in pancreatic beta cell death and the development of insulin-dependent diabetes mellitus (IDDM). We speculate that treatment with the PBN, will protect against diabetes development in two distinct chemically induced models for IDDM. Pretreatment with PBN (150 mg/kg ip) significantly reduced the severity of hyperglycemia in both alloxan- and streptozotocin (STZ) induced diabetes. To determine the mechanism by which PBN prevents hyperglycemia, we examined the ability of PBN to inhibit NFkappaB activation and to stabilize alloxan- and STZ-induced radicals. Both alloxan and STZ induced NFkappaB activation in the pancreas 30 min after their injection (50 mg/kg iv). PBN pretreatment inhibited both alloxan- and STZ-induced activation of NFkappaB and nitric oxide production. EPR studies showed that PBN could effectively trap alloxan-induced free radicals. It is clear that PBN can inhibit NFkappaB activation in the pancreas and reduce hyperglycemia in two distinct diabetogenic compounds. This research indicates that NFkappaB activation may be a key signal leading to beta cell death and IDDM. Understanding the cellular pathways leading to beta cell death may help in developing effective preventive or therapeutic targets for IDDM.  相似文献   

9.
10.
Impairment of cognitive functions, particularly long-term (episodic) and working memory, is one of the earliest prognostic symptoms of Alzheimer's disease, both cognitive impairment and neurodegeneration being mediated by amyloid-beta neurotoxicity. Effects of intracerebroventricular administration of amyloid-beta peptide (25-35) [A beta(25-35)] to rats on the retention of previously learned task in an 8-armed radial maze was studied. A beta(25-35) was injected bilaterally, at doses of 15 or 30 nmol/rat, 7 days after the preliminary learning. The performance in the maze was tested 60 days after the surgery. A beta(25-35) impaired the short-term memory, with no significant effect on the long-term memory. No dose dependence could be demonstrated.  相似文献   

11.
Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1alpha and -1beta (MIP-1alpha and MIP-1beta), which could be enhanced by interleukin (IL)-1beta at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1beta mRNA expression in NT2-N cells. Anti-IL-1beta antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1beta mRNA expression in NT2-N cells, suggesting that IL-1beta in the MDM culture supernatants is a major factor in the induction of MIP-1beta expression. Investigation of the mechanism(s) responsible for IL-1beta-induced MIP-1alpha and -1beta expression demonstrated that IL-1beta activated nuclear factor kappa B (NF-kappaB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-kappaB, not only blocked IL-1beta-induced activation of the NF-kappaB promoter but also decreased IL-1beta-induced MIP-1alpha and -1beta expression in NT2-N cells. These data suggest that NF-kappaB is at least partially involved in the IL-1beta-mediated action on MIP-1alpha and -1beta in NT2-N cells. IL-1beta-mediated up-regulation of beta-chemokine expression may have important implications in the immunopathogenesis of inflammatory diseases in the CNS.  相似文献   

12.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

13.
Alzheimer's disease (AD) is characterized by the deposition of amyloid beta-peptide (A beta) and neuronal degeneration in brain regions involved in learning and memory. One of the leading etiologic hypotheses regarding AD is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Recent evidence suggests that metals concentrated in amyloid deposits may contribute to the oxidative insults observed in AD-affected brains. We hypothesized that A beta peptide in the presence of copper enhances its neurotoxicity generating free radicals via copper reduction. In the present study, we have examined the effect of the aggregation state of amyloid-beta-peptide on copper reduction. In independent experiments we measured the copper-reducing ability of soluble and fibrillar A beta(1-40) forms by bathocuproine assays. As it was previously observed for the amyloid precursor protein (APP), the A beta peptide showed copper-reducing ability. The capacity of A beta to reduce copper was independent of the aggregation state. Finally, the A beta peptide derived from the human sequence has a greater effect than the A beta peptide derived from the rat sequence, suggesting that histidine 13 may play a role in copper reduction. In agreement with this possibility, the A beta peptide reduces less copper in the presence of exogenous histidine.  相似文献   

14.
The addition of hydralazine (1-hydrazinophthalazine) to rat liver mitochondria metabolizing malate/glutamate causes formation of a carbon-centered free radical which was spin-trapped with phenyl-t-butylnitrone (PBN) or dimethylpyrrolidine-N-oxide (DMPO). The coupling constants of the spin-trapped free radical were AN = 16.1, AH beta = 4.6 G for PBN and AN = 15.9, AH beta = 18.9 G for DMPO-trapped radical in aqueous solution. The spin-trapped free radical was shown to be the carbon dioxide anion free radical by independent synthesis, high pressure liquid chromatography separation, and electron paramagnetic resonance characterization. The amount of carbon dioxide anion free radical produced was absolutely dependent upon the presence of hydralazine and varied depending on mitochondrial substrate, with by far the highest amount produced by pyruvate. Studies with 13C-labeled pyruvate demonstrated that the carbon dioxide free radical came from C-1 of this compound.  相似文献   

15.
The toxic behaviour of the two shorter sequences of the native Abeta amyloid peptide required for cytotoxicity i.e., Abeta(31-35) and Abeta(25-35) peptides, was studied. We have shown that Abeta(31-35) peptide induces neurotoxicity in undifferentiated PC 12 cell via an apoptotic cell death pathway, including caspase activation and DNA fragmentation. Abeta(25-35) peptide, like the shorter amyloid peptide has the ability to induce neurotoxicity, as evaluated by the MTS reduction assay and by adherent cell count, but the Abeta(25-35) peptide-induced neurotoxicity is not associated with any biochemical features of apoptosis. The differences observed between the neurotoxic properties of Abeta(31-35) and Abeta(25-35) peptides might result on their different ability to be internalised within the neuronal cells. Furthermore, this study reveals that the redox state of methionine residue, C-terminal in Abeta(31-35) and Abeta(25-35) peptides affect in a different way the toxic behaviour of these two short amyloid fragments. Taken together our results suggest that Abeta(31-35) peptide induces cell death by apoptosis, unlike the Abeta(25-35) peptide and that role played by methionine-35 in Abeta induced neurotoxicity might be related to the Abeta aggregation state.  相似文献   

16.
Interactions between neurosteroidogenesis and proteins involved in age-related diseases are unknown. High concentrations of amyloid-beta (A beta) peptides induce plaques in Alzheimer's disease but several studies demonstrated that physiological or non-toxic doses are neuroprotective. We compared the effects of non-toxic and toxic concentrations of A beta 1-42 and A beta 25-35 on neurosteroidogenesis in human neuroblastoma SH-SY5Y cells. Viability assays revealed that nanomolar doses of A beta are devoid of cytotoxicity while 12 microM induced cell death. Pulse-chase, high-performance liquid chromatography and flow-scintillation analyses showed that non-toxic A beta 1-42 concentrations, acting selectively, decreased [3H]progesterone but increased [3H]estradiol production from the precursor [3H]pregnenolone. Non-toxic A beta 25-35 doses reduced [3H]progesterone formation but had no effect on [3H]estradiol biosynthesis. At 12 microM, both A beta 1-42 and A beta 25-35 inhibited [3H]progesterone formation but only A beta 1-42 reduced [3H]estradiol production. The results demonstrate a selective and amino-acid sequence-dependent action of A beta on neurosteroidogenesis. The fact that non-toxic A beta 1-42 doses stimulated neuroprotective-neurosteroid estradiol synthesis, which is inhibited by high A beta 1-42 doses, may explain A beta 1-42 ability to exert either protective or deleterious effects on nerve cells.  相似文献   

17.
Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the action of amyloid beta-peptide (A beta). We observed that A beta 25-35 induced an increase in reactive oxygen species (ROS) in NT2 rho+ cells, leading to protein and lipid oxidation. This oxidative status was partially prevented by the antioxidants, vitamin E, reduced glutathione, and by melatonin. However, NT2 rho0 cells (that lack mitochondrial DNA) in the absence of A beta showed an increase in ROS production, lipid and protein oxidation, as compared with parental rho+ cells. Upon A beta 25-35 treatment, in rho+ cells, a decrease in glutathione reductase activity and in GSH levels was observed, whereas glutathione peroxidase activity was shown to be increased. In NT2 rho0 cells, in the absence of A beta, GSH levels were maintained, whereas glutathione reductase and peroxidase activities were increased. The exposure of A beta to rho0 cells did not induce any change in these parameters. We observed that melatonin prevented caspase activation and DNA fragmentation in rho+ cells treated with A beta. Considering the evidence presented, we argue that the glutathione cycle impairment is a key event in A beta-induced cell toxicity.  相似文献   

18.
The anti-amyloidogenic capacity of hydrated fullerene C60 HyFn was revealed by the use of electron microscopy. We first showed that when, connecting with growing amyloid fibrils formed by A beta(25-35)-peptide, fullerene prevented their subsequent growth and interfered with the formation of new fibrils. Instead of long helically twisted ribbons formed by A beta(25-35)-peptide in the absence of fullerene, short narrow protofibrils were found in the presence of fullerene . These results allow one to suppose that fullerene can be useful for the therapy of Alzheimer's disease.  相似文献   

19.
Oxygen free radicals have been shown to interfere with pancreatic islet beta cell function and integrity, and have been implicated in autoimmune type 1 diabetes. We hypothesized that the spontaneous autoimmune type 1 diabetes of the BB rat would be prevented by in vivo administration of a free-radical spin trap, alpha-phenyl-N-tert-butylnitrone (PBN). Twenty-eight diabetes-prone (BBdp) and 13 non-diabetes-prone (BBn) rats received PBN (10 mg/kg) subcutaneously twice daily, and 27 BBdp and 12 BBn rats received saline as controls. Rats were treated from age 47 +/- 6 days until diabetes onset or age 118 +/- 7 days. PBN caused no growth, biochemical, or hematological side effects. Sixteen control BBdp rats became diabetic (BBd, mean age 77 +/- 6 days) and six demonstrated impaired glucose tolerance (IGT rats). The incidence of diabetes and IGT was not different in PBN-treated BBdp rats. Saline-treated rats showed no differences in pancreatic malondialdehyde (MDA) contents of BBd, IGT rats, and the BBdp that did not develop diabetes, versus BBn rats (2.38 +/- 0.35 nmoL/g). Among rats receiving PBN, BBn had lower pancreatic MDA than BBd and IGT rats (1.38 +/- 0.15 vs. 1.88 +/- 0.15 and 2.02 +/- 0.24 nmoL/g, p < 0.05), but not than BBdp rats (1.78 +/- 0.12 nmoL/g, ns). BBn rats receiving PBN also had lower pancreatic MDA than the saline controls (p < 0.05). Thus, PBN is remarkably nontoxic and is able to decrease MDA in the absence of the autoimmune process, but does not prevent diabetes. A combination of PBN with other complementary antioxidant agents may hold better promise for disease prevention.  相似文献   

20.
The present study examined the effects of a free radical scavenger, N-tert-butyl-alfa-phenylnitrone (PBN) on lithium-pilocarpine-induced status epilepticus (SE) and its short-term consequences in rats 12 (P12) or 25 (P25) days old. PBN (2 x 100 mg/kg i.p.) was injected according to the following schedules: 1) PBN-pretreated animals received the first dose 30 min prior to pilocarpine, the second dose was given 1 min after SE onset, and 2) PBN-treated animals received the first dose of PBN 1 min after SE onset and the second one 60 min later. Paraldehyde was administered to decrease mortality. Effects of PBN were highly age-dependent. In P25 group, PBN-pretreatment increased latency to SE onset and significantly suppressed the severity of motor manifestation of SE. Both PBN pretreatment and treatment improved recovery after SE. In contrast, administration of PBN in P12 animals did not affect SE pattern or recovery after SE. Administration of PBN had no effects on the motor performance of animals 3 and 6 days after SE. Neuronal damage was examined 24 h and 7 days after SE using Fluoro-Jade B staining. Mild neuroprotective effects of PBN in hippocampal fields CA1 and CA3 occurred in P25 rats in both experimental schedules. In contrast, administration of PBN aggravated neuronal injury in the hippocampus in P12 rats. Administration of PBN to intact rats did not induce neurodegeneration in either age group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号