首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone methylation plays an important role in chromatin dynamics and gene expression. Methylation of histone H3-lysine 27 by the EZH2 complex has been linked to the silencing of homeotic genes and the inactivation of the X chromosome. Here we report a characterization of the substrate preferences of the enzyme complex using a reconstituted chromatin and enzyme system. We found that the linker histone H1, when incorporated into nucleosomes, stimulates the enzymatic activity toward histone H3. This stimulatory activity may be explained by protein-protein interactions between H1 and components of the EZH2 complex. In addition, we found that the EZH2 complex exhibits a dramatic preference for dinucleosomes when compared with mononucleosomes and that the stimulation of H3 methylation by H1 requires dinucleosomes or oligonucleosome substrates. Furthermore, in contrast with a recent study suggesting that Embryonic Ectoderm Development EED isoforms may affect substrate specificity, we found that EZH2 complexes reconstituted with different EED isoforms exhibit similar substrate preference and specificity. Our work supports the hypothesis that linker histone H1 and chromatin structure are important factors in determining the substrate preference of the EZH2 histone methyltransferase complex.  相似文献   

2.
We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At different stages in purification and under various conditions (including in the presence or absence of high mobility group proteins), the methylation of m5C-deficient DNA and that of hemimethylated DNA were compared. Although hemimethylated , m5C-rich DNAs were much better substrates than were m5C-deficient DNAs and normal XP12 DNA could not be methylated, all of these DNAs were bound equally well by the enzyme. In contrast, from the same placental extract, a DNA-binding protein of unknown function was isolated which binds to m5C-rich DNA in preference to the analogous m5C-poor DNA.  相似文献   

3.
4.
5.
DNA methyltransferase polypeptides in mouse and human cells   总被引:4,自引:0,他引:4  
DNA methyltransferase was isolated as a single polypeptide of 190 kDa from mouse P815 mastocytoma cells by immunoaffinity chromatography. This polypeptide seems to be highly susceptible to proteolytic degradation resulting in additional polypeptides in the size range of 150 to 190 kDa. A polypeptide of 190 kDa was immunoprecipitated by monoclonal anti-DNA methyltransferase antibodies from extracts of two different human cell lines, Raji and K562. The 190 kDa polypeptide was synthesized in rapidly proliferating cells and, albeit at a much lower rate, also in cells grown to saturating density. DNA methyltransferase polypeptides smaller than 190 kDa were synthesized neither in log phase nor in stationary phase cells.  相似文献   

6.
The activity of human methylpurine DNA N-glycosylase (hMPG) for major substrates was directly compared using two types of substrates, i.e., natural DNA and synthetic oligonucleotides. By the use of ARP assay detecting abasic sites in DNA, we first investigated the activity on the natural DNA substrates containing methylpurines, ethenopurines, or hypoxanthine (Hx) prepared by the conventional methods. After the treatment with hMPG, the amount of AP sites in methylated DNA was much higher than that in DNA containing ethenopurines or Hx. The oligodeoxynucleotide having a single 7-methylguanine (7-mG) was newly synthesized in addition to 1, N(6)-ethenoadenine (epsilonA)-, Hx-, and 8-oxoguanine-containing oligonucleotides. 7-mG was effectively excised by hMPG, though it might be less toxic than the other methylated bases with respect to mutagenesis and cell killing. The kinetic study demonstrated that k(cat)/K(m) ratios of the enzyme for epsilonA, Hx, and 7-mG were 2.5 x 10(-3), 1.4 x 10(-3), and 4 x 10(-4) min(-1) nM(-1), respectively. The oligonucleotides containing epsilonA effectively competed against 7-mG, while Hx substrates showed unexpectedly low competition. Concerning the effect of the base opposite damage, hMPG much preferred Hx.T to other Hx pairs, and epsilonA.C and epsilonA.A pairs were better substrates than epsilonA.T.  相似文献   

7.
Mammalian DNA methyltransferase 1 (Dnmt1) is responsible for copying the DNA methylation pattern during cell division. Since Dnmt1 plays an important role in carcinogenesis, it is of particular interest to search for its specific inhibitors. To design oligonucleotide inhibitors of human Dnmt1, a number of singlestranded, double-stranded, and hairpin DNA structures containing a canonical or a modified Dnmt1 recognition site (5′-CG) were constructed on the basis of a 22-nt sequence. Structural features such as a C:A mismatch, phosphorothioates, and hairpins proved capable of incrementally increasing the oligonucleotide affinity for Dnmt1. An improvement of inhibitory properties was also achieved by replacing the target cytosine with 5,6-dihydro-5-azacytosine, 5-methyl-2-pyrimidinone, or 6-methyl-pyrrolo-[2,3-d]-2-pyrimidinone. The concentration that caused 50% inhibition of methylation of 1 μM poly(dI-dC) · poly(dI-dC), a conventional DNA substrate, was approximately 10?7 M for the most efficient oligonucleotides. Under the same in vitro conditions, these oligonucleotide inhibitors demonstrated a substantially stronger effect compared to known Dnmt1 inhibitors, which were used as controls.  相似文献   

8.
9.
10.
The insulin receptor has been shown to be a protein kinase which phosphorylates its substrates on tyrosine residues. To examine the acceptor specificity of affinity-purified insulin receptor/kinase, hydroxyamino acid containing analogues of the synthetic peptide substrate Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly were prepared. Substitution of serine, threonine, or D-tyrosine for L-tyrosine completely ablated the acceptor activity of the synthetic peptides. These peptides, along with a phenylalanine-containing analogue, did serve as competitive inhibitors of the insulin receptor/kinase with apparent Ki values in the range of 2-4 mM. These data suggest that the insulin receptor/kinase is specific for tyrosine residues in its acceptor substrate and imply that serine phosphate or threonine phosphate present in receptor is due to phosphorylation by other protein kinases. The kinetics of the phosphorylation of the L-tyrosine-containing peptide were examined by using prephosphorylated insulin receptor/kinase. Prephosphorylation of the receptor was necessary to maximally activate the kinase and to linearize the initial velocity of the peptide phosphorylation reaction. The data obtained rule out a ping-pong mechanism and are consistent with a random-order rapid-equilibrium mechanism for the phosphorylation of this peptide substrate. Additional experiments demonstrated that the autophosphorylated insulin receptor was not able to transfer the preincorporated phosphate to the synthetic peptide substrate. Thus, the insulin receptor/kinase catalyzes the reaction via a mechanism that does not involve transfer of phosphate from a phosphotyrosine-containing enzyme intermediate.  相似文献   

11.
RsrI [N6-adenine] DNA methyltransferase (M·RsrI), which recognizes GAATTC and is a member of a restriction–modification system in Rhodobacter sphaeroides, was purified to >95% homogeneity using a simplified procedure involving two ion exchange chromatographic steps. Electrophoretic gel retardation assays with purified M·RsrI were performed on unmethylated, hemimethylated, dimethylated or non-specific target DNA duplexes (25 bp) in the presence of sinefungin, a potent inhibitory analog of AdoMet. M·RsrI binding was affected by the methylation status of the DNA substrate and was enhanced by the presence of the cofactor analog. M·RsrI bound DNA substrates in the presence of sinefungin with decreasing affinities: hemimethylated > unmethylated > dimethylated >> non-specific DNA. Gel retardation studies with DNA substrates containing an abasic site substituted for the target adenine DNA provided evidence consistent with M·RsrI extruding the target base from the duplex. Consistent with such base flipping, an ~1.7-fold fluorescence intensity increase was observed upon stoichiometric addition of M·RsrI to hemimethylated DNA containing the fluorescent analog 2-aminopurine in place of the target adenine. Pre-steady-state kinetic and isotope- partitioning experiments revealed that the enzyme displays burst kinetics, confirmed the catalytic competence of the M·RsrI–AdoMet complex and eliminated the possibility of an ordered mechanism where DNA is required to bind first. The equilibrium dissociation constants for AdoMet, AdoHcy and sinefungin were determined using an intrinsic tryptophan fluorescence-quenching assay.  相似文献   

12.
Synthetic analogs of estrone sulfate which carry differently substituted sulfonyl groups at position 3 of an invariable 3-desoxyestrone (dE1) moiety were tested in vitro as inhibitors of the human placental sterylsulfatase. Using both placental microsomes and a highly purified placental sterylsulfatase preparation as the enzyme source and dehydroepiandrosterone [35S]sulfate or estrone [35]sulfate as the substrate, the following order of inhibitory potencies was observed: dE1–3-sulfonylchloride >dE1–3-sulfonylfluoride≈dE1–3-sulfonate>dE1–3-sulfonamide≈3-methylsulfonyl-dE1. According to the results, the association of enzyme and inhibitor appears to be favored by an electronegative substituent at the sulfur atom (-Cl, -F, -O). Since, however, even the most potent synthetic inhibitor was bound by the enzyme with significantly lower affinity than was the natural substrate estrone sulfate, an oxygen function between the aromatic ring and the sulfur atom may be necessary for high affinity binding towards the sterylsulfatase. In addition to its fast reversible association with the enzyme, dE1–3-sulfonylchloride further affected the sulfatase activity in a time-dependent manner. This latter inhibitory activity which may be due to a covalent modification (alkylation) of sterylsulfatase by the analog was partially prevented in the presence of substrate.  相似文献   

13.
Histone deacetylase and DNA methyltransferase in human prostate cancer   总被引:13,自引:0,他引:13  
CpG island hypermethylation and chromatin remodeling play important roles in repression of various genes during malignant transformation. We hypothesized that histone deacetylases (HDACs) and DNA methyltransferases (DNMTase) are associated with prostate cancer and we examined the enzyme activity, gene, and protein expression of HDAC1 and DNMT1 in cell lines and tissues. We found that DNMTase and HDACs activities were two- to threefold higher in cell lines compared to benign prostatic hyperplasia (BPH-1) cell line. Treatment of cells with 5-aza-2'-deoxycytidine decreased the activity of HDAC and DNMTase. The mRNA expression of these genes in BPH-1 cells and BPH tissues was lower than that in prostate cancer cells and tissues. HDAC1 and DNMT1 protein expression was higher in prostate cancer compared to BPH. This is the first report to demonstrate that DNMT1 and HDAC1 levels are up-regulated in prostate cancer compared to BPH, suggesting their roles in inactivation of various genes, by DNA-methylation-induced chromatin-remodeling, in prostate cancer.  相似文献   

14.
15.
The cell cycle-dependent and proliferation-associated expression of the enzyme DNA methyltransferase has been evaluated immunocytochemically in synchronized L-132 human embryonic lung cells, using the anti-DNA methyltransferase monoclonal antibody M1F6D7/5C10. DNA methyltransferase-reactivity was firstly seen in mid-G1 cells. An intense and granular reaction in the cell nuclei with a sparing of the nucleoli was observed in addition to a homogenous and faint cytoplasmic staining. The staining intensity in the cell nuclei increased progressively up to mitosis. In early mitotic cells an intense perichromosomal staining was observed in addition to a homogenous staining of cyto- and karyoplasm after the resolving of the core membrane. In late mitosis the staining intensity decreased rapidly. Early G1 cells and density inhibited, resting G0 cells showed no DNA methyltransferase reactivity at all. Our results indicate that anti-DNA methyltransferase monoclonal antibodies could become valuable tools to detect proliferating cells in cell cultures and tissues.  相似文献   

16.
Human DNA methyltransferase, the enzyme thought to be responsible for the somatic inheritance of patterns of DNA methylation, is an effective substrate for phosphorylation by protein kinase C. This provides a plausible mechanistic link between the action of tumor promoting phorbol esters, which stimulate protein kinase C, and abnormal patterns of DNA methylation often observed in transformed cells.  相似文献   

17.
The symmetry of the responses of the human DNA (cytosine-5)methyltransferase to alternative placements of 5-methylcytosine in model oligodeoxynucleotide duplexes containing unusual structures has been examined. The results of these experiments more clearly define the DNA recognition specificity of the enzyme. A simple three-nucleotide recognition motif within the CG dinucleotide pair can be identified in each enzymatically methylated duplex. The data can be summarized by numbering the four nucleotides in the dinucleotide pair thus: 1 4/2 3. With reference to this numbering scheme, position 1 can be occupied by cytosine or 5-methylcytosine; position 2 can be occupied by guanosine or inosine; position 3, the site of enzymatic methylation, can be occupied only by cytosine; and position 4 can be occupied by guanosine, inosine, O6-methylguanosine, cytosine, adenosine, an abasic site, or the 3' hydroxyl group at the end of a gapped molecule. Replacing the guanosine normally found at position 4 with any of the moieties introduces unusual (non-Watson-Crick) pairing at position 3 and generally enhances methylation of the cytosine at that site. The exceptional facility of the enzyme in actively methylating unusual DNA structures suggests that the evolution of the DNA methyltransferase, and perhaps DNA methylation itself, may be linked to the biological occurrence of unusual DNA structures.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号