首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Effects of 20-hydroxyecdysone and serotonin on the morphological development and the survival of antennal lobe neurons from day-2 pupal brains of the silk moth Bombyx mori were investigated in vitro. Four morphologically distinct neuronal types could be identified in the cultured antennal lobe neurons: unipolar, bipolar, multi-polar and projection neurons. Antennal lobe neurons in culture with 20-hydroxyecdysone and serotonin showed different patterns of the morphological development from those described in Manduca sexta. Projection neurons extend their neurites remarkably by 20-hydroxyecdysone in B. mori, but there is no extension from antennal lobe neurons in M. sexta. Multi-polar neurons conspicuously increase only formation of new branches from their primary neurites by serotonin in B. mori, but there are both extension and branching of the neurites in M. sexta. On day-5, antennal lobe neurons in lower titers of 20-hydroxyecdysone had significantly higher survival rates than those in higher titers. Neurons cultured for 7 days at different levels of 20-hydroxyecdysone generally showed significantly lower survival rates than neurons cultured for 5 days under the same conditions.  相似文献   

2.
Substance P (SP) is present in avian sympathetic ganglia and accelerates the decay rate of acetylcholine (ACh)-evoked macroscopic currents in sympathetic neurons. We demonstrate here that SP modulates ACh-elicited single channels in a manner consistent with an enhancement of ACh receptor (AChR) desensitization. Furthermore, since AChR channel function was monitored in cell-attached patches with SP applied to the extra-patch membrane, the peptide must act via a second messenger mechanism. SP specifically decreases the net ACh-activated single-channel current across the patch membrane by decreasing both channel opening frequency and mean open time kinetics. These experiments demonstrate that a peptide can modulate neuronal AChR function by a second messenger mechanism.  相似文献   

3.
Summary The presence of c-fos, a marker for cell activation, was investigated in cerebral neurons actively expressing ecdysteroid receptors during larval-pupal development in the tobacco hornworm, Manduca sexta. Colocalization was accomplished by ecdysteroid autoradiography using the tritiated high affinity 20-hydroxyecdysone agonist ponasterone A and immunocytochemistry with an antibody to a peptide sequence which is highly conserved in both human and murine c-fos. Immunoreactivity to a c-fos-like protein(s) was present in nuclei of many neurons of all the developmental stages examined. However, with the exception of the optic lobe, cells expressing nuclear ecdysteroid receptors were more immunoreactive than non-ecdysteroid-binding neurons. These data suggest that ecdysteroid-induced gene activation and translation may involve c-fos expression. Offprint requests to: H.-J. Bidmon  相似文献   

4.
Spinal cord neurons were dissociated from 13-day embryonic mice and grown in culture for 1-28 days. Sodium currents of neurons in culture for 1-2 days were compared with those in culture for 2-4 weeks, using the whole-cell voltage clamp method. Rapid neurite outgrowth created space clamp limitations so that unclamped neuritic sodium action potentials prevented accurate analysis of sodium current properties. Therefore neurons were bathed in sodium-free solution and brief puffs of sodium were delivered to the cell soma so that only somatic sodium currents were recorded. Sodium currents of neurons at 1-2 days in culture had voltage-dependent activation and inactivation characteristic of these channels, both in mature cultured spinal neurons and in other preparations. However, the estimated channel density on the soma of neurons 1-2 days in culture was less than two channels per micron2. Since the available sodium conductance (as measured by action potential rise rates) increases during development of spinal cord neurons in culture (Westbrook and Brenneman, 1984), we suggest that changes in channel density and/or distribution, rather than in channel kinetics, may underlie the increase in sodium conductance.  相似文献   

5.
Chick ciliary ganglion neurons have a membrane component that shares an antigenic determinant with the main immunogenic region (MIR) of nicotinic acetylcholine receptors from skeletal muscle and electric organ. Previous studies have shown that the component has many of the properties expected for a ganglionic nicotinic acetylcholine receptor, and that its distribution on the neuron surface in vivo is restricted predominantly to synaptic membrane. Here we report the presence of a large intracellular pool of the putative receptor in embryonic neurons and demonstrate that it is associated with organelles known to comprise the biosynthetic and regulatory pathways of integral plasma membrane proteins. Embryonic chick ciliary ganglia were lightly fixed, saponin-permeabilized, incubated with an anti-MIR monoclonal antibody (mAb) followed by horseradish peroxidase-conjugated secondary antibody, reacted for peroxidase activity, and examined by electron microscopy. Deposits of reaction product were associated with synaptic membrane, small portions of the pseudodendrite surface membrane, most of the rough endoplasmic reticulum, small portions of the nuclear envelope, some Golgi complexes, and a few coated pits, coated vesicles, multivesicular bodies, and smooth-membraned vacuoles. No other labeling was present in the neurons. The labeling was specific in that it was not present when the anti-MIR mAb was replaced with either nonimmune serum or mAbs of different specificity. Chick dorsal root ganglion neurons thought to lack nicotinic acetylcholine receptors were not labeled by the anti-MIR mAb. Substantial intracellular populations have also been reported for the muscle acetylcholine receptor and brain voltage-dependent sodium channel alpha-subunit. This may represent a general pattern for multisubunit membrane proteins during development.  相似文献   

6.
Neurons in the developing (antennal) olfactory lobe of the moth Manduca sexta undergo a period of extensive process outgrowth and branching that coincides temporally with both a rising titer of the steroid hormone 20-hydroxyecdysone and the ingrowth of sensory axons from receptors in the antenna. To evaluate the contribution of these two influences to the morphological development of antennal-lobe neurons, we placed the neurons in cell culture. Antennal-lobe neurons were dissociated from normal and chronically unafferented lobes at different stages of development and were exposed to different doses of hormone. Six neuronal cell types with distinctive and stable morphologies appeared in cultures from all stages of pupal development. Morphological changes in these neuronal types were examined quantitatively by comparison of the total length and number of branches. We found that 20-hydroxyecdysone had little direct effect on the morphological development of antennal-lobe neurons, but brief exposure to sensory axons in vivo prior to dissociation significantly enhanced subsequent outgrowth in culture. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The antennal lobe (AL) of the sphinx moth Manduca sexta is a well-established model system for studying mechanisms of neuronal development. To understand whether neuropeptides are suited to playing a role during AL development, we have studied the cellular localization and temporal expression pattern of neuropeptides of the A-type allatostatin family. Based on morphology and developmental appearance, we distinguished four types of AST-A-immunoreactive cell types. The majority of the cells were local interneurons of the AL (type Ia) which acquired AST-A immunostaining in a complex pattern consisting of three rising (RI–RIII) and two declining phases (DI, DII). Type Ib neurons consisted of two local neurons with large cell bodies not appearing before 7/8 days after pupal ecdysis (P7/P8). Types II and III neurons accounted for single centrifugal neurons, with type II neurons present in the larva and disappearing in the early pupa. The type III neuron did not appear before P7/P8. RI and RII coincided with the rises of the ecdysteroid hemolymph titer. Artificially shifting the pupal 20-hydroxyecdysone (20E) peak to an earlier developmental time point resulted in the precocious appearance of AST-A immunostaining in types Ia, Ib, and III neurons. This result supports the hypothesis that the pupal rise in 20E plays a role in AST-A expression during AL development. Because of their early appearance in newly forming glomeruli, AST-A-immunoreactive fibers could be involved in glomerulus formation. Diffuse AST-A labeling during early AL development is discussed as a possible signal providing information for ingrowing olfactory receptor neurons.This work was supported by a DFG grant (Scha 678/3-3) to J.S.  相似文献   

8.
Previous work showed that 20-hydroxyecdysone activates the fat body of Sarcophaga peregrina larvae to incorporate storage protein selectively from the hemolymph. In this study, storage protein receptors of the fat body membrane which were induced on pupation or on treatment of larval fat body with 20-hydroxyecdysone in vitro were identified. The binding of storage protein to its receptor required divalent cations, especially Ca2+, and the binding was very sensitive to pH. The storage protein receptor was inactivated when the fat body membrane was treated with trypsin. The storage protein receptor is probably a protein and it may be synthesized de novo or a cryptic form may be converted to the active form when the concentration of 20-hydroxyecdysone in the hemolymph reaches a physiological level.  相似文献   

9.
Abstract: Poly(A)+ mRNA was extracted from cultures of neurons isolated from mouse embryonic day 14 cerebral cortex and injected into Xenopus oocytes. This led to the expression of receptors for γ-aminobutyric acid (GABA), glycine, acetylcholine, serotonin, glutamate, kainate, N -methyl-D-aspartate, and quisqualate. Northern blot analysis of poly(A)+ mRNA from the cultured neurons with a GluRI cDNA probe revealed the presence of three hybridization bands with estimated mRNA sizes of 5.1, 4.0, and 3.1 kb, respectively. The development of mRNAs coding for neurotransmitter receptors was investigated by isolating mRNA from neurons cultured for 2, 8, and 14 days in vitro and injecting it into Xenopus oocytes. The amplitude of membrane currents elicited by the transmitters gave a measure of the relative amounts of the different mRNAs. The size of the responses to kainate, aspartate (together with glycine), glutamate, acetylcholine, GABA, serotonin, and glycine increased with the time of culture in vitro. However, in contrast to all other agonist-induced currents, the current induced by glycine failed to increase further from 8 to 14 days in culture. It is concluded that the time course of receptor development in cortical neurons in vitro is similar to the development in vivo.  相似文献   

10.
Acetylcholine is the predominant excitatory transmitter in the insect central nervous system with many of its effects mediated by nicotinic acetylcholine receptors. These receptors are present at very high density and are structurally heterogeneous, although little is known about functional distinctions between them. An interesting system for examining these receptors is the larval stage of Manduca sexta, a nicotine-resistant tobacco-feeding insect. The nicotinic responses of cultured neurons were found to be blocked by mecamylamine and curare but highly resistant to alpha-bungarotoxin. The responses were also unaffected by the reducing agent dithiothreitol and the alkylating agent bromoacetylcholine suggesting that the alpha-subunit dicysteine agonist binding site is protected. To begin determining the functional roles of different subunits in these receptors, cultured neurons were treated with oligonucleotides based on the gene sequence of the alpha subunit, MARA1. Antisense DNA caused a significant downward shift in the amplitude distribution of nicotinic responses compared to sense or reverse antisense treatments. These treatments did not affect currents mediated by the application of GABA. The reduction in the nicotinic depolarization and inward currents did not affect the rate of current onset or recovery, suggesting that antisense MARA1 causes a partial block of all nicotinic responses in these neurons. These results demonstrate that receptor gene expression in insect neurons can be manipulated in a sequence-specific manner by antisense treatment and they provide evidence that MARA1 is important for normal nicotinic responses in Manduca.  相似文献   

11.
目的:检测脊神经切断大鼠背根节(DRG)神经元重复放电能力和钠电流的变化,并研究介导其电流变化的钠通道亚型的表达情况。方法:脊神经切断术后2~8d慢性痛大鼠模型背根节急性分离,对中等直径DRG神经元运用全细胞膜片钳技术记录神经元放电和钠电流的变化。对背根节神经元进行RT-PCR检测,分析其钠通道亚型的表达情况。结果:电流钳下,实验组DRG神经元在电流刺激下产生重复放电,而对照组神经元多诱发单个动作电位,电压钳记录发现实验组背根节神经元快钠电流和持续性钠电流幅值均明显大于对照组,PCR结果显示,Nav1.3、Nav1.7和Nav1.8通道亚型mRNA表达显著增高。结论:钠通道介导了脊神经受损模型的DRG神经元兴奋性增高,持续性钠电流可能通过调节阈下膜电位振荡的产生调节神经元兴奋性。  相似文献   

12.
In the moth, Manduca sexta, 3',5'-guanosine monophosphate (cGMP) is transiently elevated during adult development in about 100 neurons of the antennal lobe. We demonstrate that nearly all of these neurons are local interneurons of the lateral cluster I, that their capacity to show a strong cGMP response during development is regulated by the steroid hormone 20-hydroxyecdysone, and that in a subpopulation of these neurons cGMP elevation seems to be controlled directly by the gaseous messenger molecule nitric oxide (NO). Treatment with the acetylcholine esterase inhibitor eserine, antennal nerve transection, and electrical stimulation of the antennae suggest that NO/cGMP signaling during development is an activity-dependent process. Besides input from the antennae, input from the central brain and the ventral ganglia is involved in upregulating cGMP in the antennal-lobe neurons. Possible sources are centrifugal aminergic neurons, since application of serotonin and histamine enhances the GMP signal in local interneurons. Comparing the time course of cGMP elevation with events occurring during development leads us to the hypothesis that the NO/cGMP signaling pathway might be involved in synapse formation of a subset of antennal-lobe neurons.  相似文献   

13.
Summary To provide a framework for biochemical investigation of ecdysteroid action inAedes albopictus mosquito cells, we examined the effect of 20-hydroxyecdysone on cell growth and morphology, synthesis of inducible proteins (EIPs), and expression of a transfected gene regulated by a synthetic ecdysteroid response element. When cells were cultured in the continuous presence of 10−6 M 20- hydroxyecdysone, the rate of growth decreased and subtle changes in cell morphology were observed. In bothAedes aegypti andA. albopictus cells, synthesis of a small number of radiolabeled proteins, which appeared as minor bands on sodium dodecyl sulfate-polyacrylamide gels, was induced by treatment with 20-hydroxyecdysone. On two-dimensional polyacrylamide gels, 11 EIPs, ranging in size from approximately 22 to 52 kDa, were identified inA. albopictus C7-10 cells. Ten inducible proteins were localized in the cytoplasmic fraction; EIP28 and EIP31 were detected in both cytoplasmic and nuclear extracts, and EIP29 was detected only in the nucleus, at a very low level. None of these proteins corresponded to small heat shock proteins, whose genes are 20-hydroxyecdysone-inducible in someDrosophila cell lines. The juvenile hormone analog, methoprene, induced expression of a 25 kDa protein in C7-10 cells. Although 20-hydroxyecdysone sustained the synthesis of this methoprene-inducible protein, synthesis did not occur in the presence of 20-hydroxyecdysone alone. In transfectedA. albopictus cells, expression of a recombinant DNA construct containing two tandem synthetic ecdysteroid regulatory elements based on aD. melanogaster small heat shock protein gene was modestly induced by 20-hydroxyecdysone.  相似文献   

14.
Recently, a novel class of genes coding for Ih-channels has been identified in several vertebrates and invertebrates. We isolated a cDNA (AMIH) encoding a putative member of these ion channels from Apis mellifera heads by means of polymerase chain reaction and homology screening. High similarity (88% identical amino acids) to the putative Drosophila melanogaster Ih-channel suggests that the Apis cDNA codes for a hyperpolarization-activated and cyclic nucleotide-gated channel. Functional expression of recombinant AMIH in HEK293 cells gave unitary currents that were preferentially selective for potassium over sodium ions and were activated by hyperpolarizing voltage steps. Cyclic nucleotides shifted the voltage activation curve to more positive membrane potentials. The current kinetics, activation by hyperpolarizing voltage steps and modulatory influence of cyclic nucleotides properties closely resemble those of mammalian Ih-channels. RT-PCR analysis showed pronounced mRNA expression in the antennae, head and body of Apis mellifera. Investigation of hyperpolarization-activated currents in olfactory receptor neurons (ORNs) in a primary cell culture of Apis mellifera antennal cells revealed activation properties similar to the heterologously expressed Ih-channel. By in-situ hybridization and immunohistochemistry, expression of AMIH was seen in olfactory receptor neurons of the bee antennae. We conclude that AMIH is the ion channel responsible for the hyperpolarization-activated currents in olfactory receptor neurons of bee.  相似文献   

15.
Summary A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptorrich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electronmicroscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.Abbreviations ACHR nicotinic acetylcholine receptor - ACHE acetylcholinesterase - BSA bovine serum albumin - EMPG extracellular matrix proteoglycan fraction - FITC fluorescein isothiocyanate - FN fibronectin - LN laminin - TBS Tris-HCl-buffered saline - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

16.
Abdominal injection of 1 μg aqueous 20-hydroxyecdysone into Anagasta kuehniella, anytime prior to the initiation of sperm release from the testes, prevents the impending release of eupyrene sperm bundles. Apyrene sperm release is not prevented and there is complete recovery of eupyrene release by the following cycle 24 hr later. If 20-hydroxyecdysone is administered on consecutive days, no eupyrene bundles are released and although apryene sperm release continues, it diminishes with time. The effect of 20-hydroxyecdysone in preventing eupyrene release is dose dependent. Administration of decreasing 20-hydroxyecdysone dosages results in increasing numbers of eupyrene bundles released. When a single injection of 20-hydroxyecdysone is administered to isolated abdomens, recovery time of eupyrene sperm release is slower than in whole moths and total recovery is not seen even by 5 days after administration. Apyrene sperm release is also affected to a greater extent than in whole moths, and in some cases, no apyrene release was detected at all. Treatment with 20-hydroxyecdysone prevents cupyrene bundles from passing through the testicular basilar membrane into the vasa efferentia, thus causing a build up of bundles near the basilar membrane but no disintegration of these eupyrene sperm bundles.  相似文献   

17.
Using electrophysiological and autoradiographic techniques, the gating properties and the metabolic stability of acetylcholine receptor-channel complexes were measured in the end-plate membrane of neonatal rat soleus muscle at various stages of postnatal development. Analysis of the decay time course of miniature end-plate current recordings suggests that a conversion of channel gating properties from a slowly relaxing to a rapidly relaxing type of end-plate channel, as found in the end-plate of adult fibers, occurs between day 8 and day 18 of postnatal development and can be described as a first-order process with a half-conversion time of ?3–4 days. Silver grain counts of autoradiograms of end-plates labeled with 125I-α-bungarotoxin and subsequently maintained in organ culture for various times indicate that subsynaptic acetylcholine receptors have a metabolic half-life time ≥9 days, comparable to the value observed in adult fibers, already at the time of birth. This is taken as evidence that, during synaptogenesis, receptor and channel properties are controlled by different regulatory signals from the nerve terminal. A comparison of the time course of channel conversion and of receptor incorporation suggests that the postnatal change in end-plate channel properties is not the result of incorporation of a different form of receptor-channel complex.  相似文献   

18.
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.  相似文献   

19.
Tetrodotoxin-insensitive (TTX-I) sodium currents have been recorded from newborn and adult rat sensory neurons, but the sodium channel gene(s) responsible for the TTX-I current are unknown. Because SkM2, one of six voltage-sensitive sodium channel genes cloned from rat, encodes the only cloned channel that is relatively resistant to tetrodotoxin, we sought to test whether the TTX-I current in rat sensory neurons is due to the SkM2 channel. We hypothesized that the TTX-I current might be generated from (1) an RNA splicing variant of SkM2, (2) post-translational modification of the SkM2 protein, or (3) interaction with altenate additional channel subunits. SkM2 mRNA expression was examined in newborn rat dorsal root ganglia (DRG) by RNase arotection assay. No SkM2 expression was detected. Therefore, we conclude that the TTX-I sodium current in DRG is unlikely to result from the expression of the SkM2 gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号