首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Youn Jo Ko 《Biophysical journal》2010,98(10):2163-2169
Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to resolve many problems that could not be addressed by previous experimental studies.  相似文献   

2.
Rotaviral diarrheal illness is one of the most common infectious diseases in children worldwide, but our understanding of its pathophysiology is limited. This study examines whether the enhanced net chloride secretion during rotavirus infection in young rabbits may occur as a result of hypersecretion in crypt cells that would exceed the substantial Cl(-) reabsorption observed in villi. By using a rapid filtration technique, we evaluated transport of (36)Cl and D-(14)C glucose across brush border membrane (BBM) vesicles purified from villus tip and crypt cells isolated in parallel from the entire small intestine. Rotavirus infection impaired SGLT1-mediated Na(+)-D-glucose symport activity in both villus and crypt cell BBM, hence contributing to the massive water loss along the cryptvillus axis. In the same BBM preparations, rotavirus failed to stimulate the Cl(-) transport activities (Cl(-)/H(+) symport, Cl(-)/anion exchange and voltage-activated Cl(-) conductance) at the crypt level, but not at the villus level, questioning, therefore, the origin of net chloride secretion. We propose that the chloride carrier might function in both normal (absorption) and reversed (secretion) modes in villi, depending on the direction of the chloride electrochemical gradient resulting from rotavirus infection, agreeing with our results that rotavirus accelerated both Cl(-) influx and Cl(-) efflux rates across villi BBM.  相似文献   

3.
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.  相似文献   

4.
We measured the effects of a beta-adrenergic agonist, isoproterenol, on chloride transport and volume regulation of lamprey (Lampetra fluviatilis) erythrocytes in isotonic (288 mosm L(-1)) and hypotonic (192 mosm L(-1)) medium. Isoproterenol at a high concentration (10(-5) M) did not influence chloride transport in isotonic medium but markedly increased chloride fluxes in hypotonic conditions: unidirectional flux increased from 100 mmol kg dcw(-1) h(-1) in the absence to 350 mmol kg dcw(-1) h(-1) (dcw=dry cell weight) in the presence of isoproterenol. Simultaneously, the half-time for volume recovery decreased from 27 to 9 min. Isoproterenol caused an increase in cellular cyclic AMP (cAMP) concentration. The stimulation of chloride transport in hypotonic conditions could be induced by application of the permeable cAMP analogue, 8-bromo-cyclic AMP, suggesting that the effect of beta-adrenergic stimulation on chloride transport occurs downstream of cAMP production. As isoproterenol did not affect unidirectional rubidium fluxes in hypotonic conditions, the transport pathway influenced by beta-adrenergic stimulation is most likely the swelling-activated chloride channel. Because the beta-adrenergic agonist only influenced the transport in hypotonic conditions despite the fact that cAMP concentration also increased in isotonic conditions, the activation may involve a volume-dependent conformational change in the chloride channel.  相似文献   

5.
Five widely documented mechanisms of chloride transport across plasma membranes are: anion-coupled antiport; sodium and hydrogen-coupled symport; Cl- channels; and an electrochemical coupling process. No genetic evidence has yet been provided for primary active chloride transport despite numerous reports of cellular Cl(-)-stimulated ATPases co-existing, in the same tissue, with uphill chloride transport that could not be accounted for by the five common chloride transport processes. Cl(-)-stimulated ATPase activity is a common property of practically all biological cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase activity. Recent studies of Cl(-)-stimulated ATPase activity and active chloride transport in the same membrane system, including liposomes, suggest a mediation by the ATPase in net movement of chloride up its electrochemical gradient across plasma membranes. Further studies, especially from a molecular biological perspective, are required to confirm a direct transport role to plasma membrane-localized Cl(-)-stimulated ATPases.  相似文献   

6.
Cl(-)-ATPases: Novel primary active transporters in biology   总被引:2,自引:0,他引:2  
Five widely documented mechanisms of chloride transport across plasma membranes are anion-coupled antiport, sodium and hydrogen-coupled symport, Cl(-)channels, and an electrochemical coupling process. No genetic evidence has yet been provided for primary active chloride transport despite numerous reports of cellular Cl(-)-stimulated ATPases co-existing, in the same tissue, with uphill chloride transport that could not be accounted for by the five common chloride transport processes. Cl(-)-stimulated ATPase activity is a common property of practically all biological cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase activity. Recent studies of Cl(-)-stimulated ATPase activity and active chloride transport in the same membrane system, including liposomes, suggest a medication by the ATPase in net movement of chloride up its electrochemical gradient across plasma membranes. Further studies, especially from a molecular biological perspective, are required to confirm a direct transport role to plasma membrane-localized Cl(-)-stimulated ATPases. J. Exp. Zool. 289:215-223, 2001.  相似文献   

7.
External N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (Eo or EClo ) form. Since NAP-taurine prevents the conformational change from EClo to ECli , it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H2DIDS (4,4'-diisothiocyano-1,2- diphenylethane -2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H2DIDS reveals that the transport system is intrinsically asymmetric, such that when Cli = Clo, most of the unloaded transport sites face the cytoplasmic side of the membrane.  相似文献   

8.
The ontogenetic differentiation of transepithelial chloride transport was evaluated in the cortical collecting tubule of the rabbit kidney. Tubules from four control groups (I-IV) were studied during in vitro perfusion. I: body weight 150-280 g; II: 330-480 g; III: 530-880 g; IV: 980-1610 g. In each group, aldosterone (100 micrograms/100 g body weight/day) was given subcutaneously in three doses daily, for 6 days (IA-IVA). Transepithelial net chloride flux (pmol cm2 s1) increased by a factor of almost 3 from group I to group IV (p less than 0.01). Aldosterone induces net chloride flux by 103% (P = 0.03) in IA and by 78% (P = 0.01) in IIA; changes in groups III (21%) and IV (27%) were small. Therefore, the mineralocorticoid induces transepithelial chloride transport in cortical collecting tubule during early transport differentiation. The inducing action decreases with natural differentiation. Moreover, aldosterone alone suffices to induce the complete expression of transepithelial chloride transport in the cortical collecting tubule.  相似文献   

9.
The nature of a transmembrane transport process depends largely on the identity of the reaction that is rate-limiting in the transport cycle. The one-for-one exchange of two chloride ions across the red cell membrane by band 3 can be decomposed into two component reactions: 1) the binding and dissociation of chloride at the transport site, and 2) the translocation of bound chloride across the membrane. The present work utilizes 35 Cl NMR and 37 Cl NMR to set lower limits on the rates of chloride binding and dissociation at the saturated inward- and outward-facing band 3 transport sites (greater than or equal to 10(5) events site-1 s-1 in all cases). At both 0-3 and 37 degrees C, the NMR data specify that chloride binding and dissociation at the saturated transport sites are not rate-limiting, indicating that translocation of bound chloride across the membrane is the slowest step in the overall transport cycle. Using these results, it is now possible to describe many features of the kinetic equation for the ping-pong transport cycle of band 3. This transport cycle can be decomposed into two half-reactions associated with the transport of two chloride ions in opposite directions across the membrane, where each half-reaction is composed of sequential binding, translocation, and dissociation events. One half-reaction contains the rate-limiting translocation event that controls the turnover of the transport cycle; in this half-reaction, translocation must be slower than binding and dissociation. The other half-reaction contains the non-rate-limiting translocation event that in principle could be faster than binding or dissociation. However, when the following sufficient (but not necessary) condition is satisfied, both translocation events are slower than binding and dissociation: if the non-rate-limiting translocation rate is within a factor of 10(2) (0-3 degrees C) or 2 (37 degrees C) of the overall turnover rate, then translocation is rate-limiting in each saturated half-reaction. Thus, even though chloride appears to migrate through a channel that leads from the transport site to solution, the results support a picture in which the binding, dissociation, and channel migration events are rapid compared to the translocation of bound chloride across the membrane. In this case, chloride binding to the transport site can be described by a simple dissociation constant (KD = kappa OFF/kappa ON) rather than by a Michaelis-Menten constant (KM = (kappa OFF + kappa TRANSLOCATION)/KAPPA ON).  相似文献   

10.
Stilbenedisulfonates (S) constitute an important class of competitive inhibitors of the anion exchange (AE) function found in plasma membranes of various cell types. I present a brief summary of recent kinetic studies that provide insight into the mechanism of stilbenedisulfonate-chloride competition in binding to human erythrocyte band 3 (AE1) (B), the chloride-bicarbonate exchanger. Reversible stilbenedisulfonate binding follows a two-step mechanism (S + B <--> SB <--> SB*). Several lines of evidence are summarized that show that chloride, stilbenedisulfonates, and band 3 form a ternary complex, with chloride lowering stilbenedisulfonate affinity allosterically, by accelerating the rate of stilbenedisulfonate release. Of particular significance was our evidence demonstrating that extracellular chloride could accelerate stilbenedisulfonate release from its binding site on the outer surface of band 3 in resealed ghosts (i.e., acceleration in the release of a bound competitive inhibitor by a cis substrate). I suggest that the latter result may be consistent with our earlier proposal that band 3 follows a two-site ordered sequential mechanism, where two allosterically linked chloride binding transport sites move back and forth across the membrane together.  相似文献   

11.
Sulfate transport across the red cell membrane is enhanced by the newly synthesised, water-soluble and nonpenetrating dansyl chloride derivative 2-(N-piperidine)ethylamine-1-naphthyl-5-sulfonylchloride (PENS-Cl). The transport is only enhanced if the potentiating agent 2-(4-aminophenyl-3-sulfonic acid)-6-methylbenzothiazol-7-sulfonic acid (APMB) is present during incubation with PENS-Cl. The enhanced flux is reduced by the anion-transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS) to about the same low level as in untreated controls. In contrast to dansyl chloride, PENS-Cl does not increase cation leakage from the red cells. The effects of PENS-Cl on sulfate transport resemble those produced by dansyl chloride. However, it can be shown that PENS-Cl only reacts with one subset of sites that are modified by dansyl chloride and involved in bringing about the enhancement of sulfate transport. This subset does not include the sites accessible to dansyl chloride in the absence of APMB. It comprises only a fraction of the sites exposed to dansyl chloride in the presence of APMB. Very little labelling of proteins of the red cell membrane can be seen after exposure of ghosts to the PENS-Cl, while dansyl chloride labels all major proteins.  相似文献   

12.
Abstract

Three widely documented mechanisms of chloride transport across plasma membranes are anion-coupled antiport, sodium-coupled symport, and an electrochemical coupling process. No direct genetic evidence has yet been provided for primary active chloride transport despite numerous reports of cellular Cl-stimulated adenosine triphos-phate (ATP)ases coexisting in the same tissue with uphill chloride transport that could not be accounted for by the three common chloride transport processes. Ch-stimulated ATPases are a common property of practically all biological cells, with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl–stimulated ATPase activity. Recent studies of Cl'-stimulated ATPase activity and chloride transport in the same membrane system, including liposomes, suggest a mediation by the ATPase in net movement of chloride up its electrochemical gradient across plasma membranes. Further studies, especially from a molecular biological perspective, are required to confirm a direct transport role to plasma membrane-localized Ch-stimulated ATPases.  相似文献   

13.
We have applied our recently developed approach for quantitative generation and estimation of membrane potential differences (Berteloot, A. (1986) Biochim. Biophys. Acta 857, 180-188) to the reevaluation of glutamic acid transport rheogenicity in rabbit jejunal brush-border membrane vesicles. Membrane diffusion-potentials were created by altering iodide concentrations in the intra- and extravesicular compartments while keeping isosmolarity, isotonicity and ionic strength constant by chloride replacement. The known value of ion permeabilities relative to sodium in this preparation also allows calculation of membrane potential differences using the Goldman-Hodgkin-Katz equation. This strategy appears superior to more classical methods involving ionophore-induced membrane diffusion-potentials of protons or potassium as both cations have been shown to participate in the transport mechanism. In this paper, we demonstrate that this approach is perfectly suitable for the investigation of membrane potential dependency of glutamic acid transport as our results showed that chloride replacement by iodide did not affect uptake in vesicles with membrane potential clamped to zero by gramicidin D (sodium conditions) or by gramicidin D plus valimonycin (sodium + potassium conditions). The method thus allows to dissociate membrane potential effects from possible effects that might be introduced by altering the anion species. In these conditions, our studies clearly demonstrate that glutamic acid uptake, whether analyzed over a 1 min time scale or under initial rate conditions, was sensitive to membrane potential differences. However, our results also show that the electrogenicity of the transport system varied depending upon the intravesicular presence or absence of potassium, its presence stimulating the membrane potential dependency of uptake. This effect is modulated by the internal pH and it is concluded that inside H+ and K+ are not equivalent as countertransported cations. The external pH also seems to modulate the response to potential by acting on the fully loaded form(s) of the transporter. The possibility that outside H+ competes for (an) external Na+ binding site(s) and/or precludes the attachment of (an) extra sodium ion(s) should be considered.  相似文献   

14.
Sulfate transport across the red cell membrane is enhanced by the newly synthesised, water-soluble and nonpenetrating dansyl chloride derivative 2-(N-piperidine)ethylamine-1-napththyl-5-sulfonylchloride (PENS-Cl). The transport is only enhanced if the potentiating agent 2-(4-aminophenyl-3-sulfonic acid)-6-methylbenzothiazol-7-sulfonic acid (APMB)is present during incubation with PENS-Cl. The enhanced flux is reduced by the anion-transport inhibitor 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonate (H2 DIDS) to about the same low level as in untreated controls. In contrast to dansyl chloride, PENS-Cl does not increase cation leakage from the red cells. The effects of PENS-Cl on sulfate transport resemble those produced by dansyl chloride. However, it can be shown that PENS-Cl only reacts with one subset of sites that are modified by dansyl chloride and involved in bringing about the enhancement of sulfate transport. This subset does not include the sites accessible to dansyl chloride in the absence of APMB. It comprises only a fraction of the sites exposed to dansyl chloride in the presence of APMB. Very little labelling of proteins of the red cell membrane can be seen after exposure of ghosts to the PENS-Cl, while dansyl chloride labels all major proteins.  相似文献   

15.
The steady state transport and distribution of chloride between the intracellular and extracellular phases was investigated when the extracellular chloride concentration was varied by isosmotic replacement with nitrate, bromide and acetate. The results of these experiments show that chloride transport, measured by uptake of 36Cl, is sensitive to the replacement anion. In the presence of nitrate, chloride transport is a linear function of the extracellular chloride concentration. The relationship between chloride transport and extracellular chloride in the presence of bromide is concave upward which suggests that this anion inhibits chloride movement. However, when acetate replaces chloride, the relationship between chloride transport and extracellular chloride is concave downward. The chloride distribution ratio of cells incubated in 145-155mM chloride medium is 0.386 and is not effected by the replacement of chloride with nitrate, bromide or acetate. These findings are consistent with the assertion that chloride transport is composed of two parallel pathways, a diffusional plus a saturating, mediated component. Of the total chloride flux (9.1 mmoles Cl-/kg dry weight per minute) measured in chloride medium (145-155 mM Cl-), the mediated component represents 40% and the diffusional component 60%.  相似文献   

16.
The isolated rabbit caecum was studied in vitro. Under our experimental conditions, the rabbit caecum secreted potassium and chloride and absorbed sodium. To characterize the transport properties of the apical and the basolateral barriers, transepithelial electrical and flux (22Na, 36Cl and 86Rb) measurements and their sensitivity to transport inhibitors (furosemide, DIDS, ouabain and barium) are presented together with intracellular measurements with double-barrelled microelectrodes of intracellular electrical potentials and ionic activities. The fluxes of sodium and chloride were insensitive to DIDS and furosemide. The secretion of potassium and the absorption of sodium were both inhibited by ouabain, indicating that they are coupled through the sodium pump. Ouabain induced a slow fall in the chloride net fluxes, suggesting that these fluxes are also driven by the sodium pump, albeit indirectly. The basolateral to apical fluxes of potassium are insensitive to barium added to the apical side, but are accelerated by the replacement of chloride by gluconate on the apical side, suggesting the presence of a K+/Cl- symport in the apical barrier.  相似文献   

17.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

18.
GAT-1, a gamma-aminobutyric acid (GABA) transporter cloned from rat brain, was expressed in Xenopus oocytes. Voltage-clamp measurements showed concentration-dependent, inward currents in response to GABA (K0.5 4.7 microM). The transport current required extracellular sodium and chloride ions; the Hill coefficient for chloride was 0.7, and that for sodium was 1.7. Correlation of current and [3H]GABA uptake measurements indicate that flux of one positive charge occurs per molecule of GABA transported. Membrane hyperpolarization from -40 to -100 mV increased the transport current approximately 3-fold. The results indicate that the transport of one molecule of GABA involves the co-transport of two sodium ions and one chloride ion.  相似文献   

19.
Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na+ and H(+)-coupled symport, Cl- channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl(-)-stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl(-)-stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase pump activity. Recent studies of Cl(-) -stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl(-)-ATPase pumps; however, these primary active transporters exist as either P-, F- or V-type ATPase pumps depending upon the tissue under study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号