首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Rac1 has emerged as an important regulator of cell survival and apoptosis, but the mechanisms involved are not completely understood. In this report, constitutively active Rac1 is shown to stimulate the phosphorylation of the Bcl-2 family member Bad, thereby suppressing drug-induced caspase activation and apoptosis in human lymphoma cells. Rac1 activation leads to human Bad phosphorylation specifically at serine-75 (corresponding to murine serine-112) both in vivo and in vitro. Inhibition of constitutive and activated Rac1-induced Bad phosphorylation by a cell-permeable competitive peptide inhibitor representing this Bad phosphorylation site sensitizes lymphoma cells to drug-induced apoptosis. The data show further that endogenous protein kinase A is a primary catalyst of cellular Bad phosphorylation in response to Rac activation, while Akt is not involved. These findings define a mechanism by which active Rac1 promotes lymphoma cell survival and inhibits apoptosis in response to cancer chemotherapy drugs.  相似文献   

2.
3.
Rho family GTPases Rac and Cdc42 are pivotal regulators of apoptosis in multiple cell types. However, little is known about the mechanism by which these GTPases are regulated in response to apoptotic stimuli. Here, we demonstrate that TIAM1, a Rac-specific guanine nucleotide exchange factor, is cleaved by caspases during apoptosis. TIAM1 cleavage occurs in multiple cell lines in response to diverse apoptotic stimuli such as ceramide, Fas, and serum deprivation. Processing occurs at residue 993 of TIAM1 and removes the NH(2)-terminal of TIAM's two pleckstrin homology domains, leaving a stable fragment containing the Dbl homology and COOH-terminal pleckstrin homology domains. This leads to functional inactivation of TIAM1, as determined by failure of the cleavage product to stimulate GTP loading of Rac in vivo. Furthermore, this product is defective in signaling to two independent Rac effectors, c-Jun NH(2)-terminal kinase and serum response factor. Finally, we demonstrate that in cells treated with ceramide, cleavage of TIAM1 coincided with the inactivation of endogenous Rac. These results reveal a novel mechanism for regulating guanine nucleotide exchange factor activity and GTPase-mediated signaling pathways.  相似文献   

4.
5.
Clostridium difficile toxin B (TcdB) inactivates the small GTPases Rho, Rac and Cdc42 during intoxication of mammalian cells. In the current work, we show that TcdB has the potential to stimulate caspase-dependent and caspase-independent apoptosis. The apoptotic pathways became evident when caspase-3-processed-vimentin was detected in TcdB-treated HeLa cells. Caspase-3 activation was subsequently confirmed in TcdB-intoxicated HeLa cells. Interestingly, caspase inhibitor delayed TcdB-induced cell death, but did not alter the time-course of cytopathic effects. A similar effect was also observed in MCF-7 cells, which are deficient in caspase-3 activity. The time-course to cell death was almost identical between cells treated with TcdB plus caspase inhibitor and cells intoxicated with the TcdB enzymatic domain (TcdB1-556). Unlike TcdB treated cells, intoxication with TcdB1-556 or expression of TcdB1-556 in a transfected cell line, did not stimulate caspase-3 activation yet cells exhibited cytopathic effects and cell death. Although TcdB1-556 treated cells did not demonstrate caspase-3 activation these cells were apoptotic as determined by differential annexin-V/propidium iodide staining and nucleosomal DNA fragmentation. These data indicate TcdB triggers caspase-independent apoptosis as a result of substrate inactivation and may evoke caspase-dependent apoptosis due to a second, yet undefined, activity of TcdB. This is the first example of a bacterial virulence factor with the potential to stimulate multiple apoptotic pathways in host cells.  相似文献   

6.
Cutting edge: Rac GTPases sensitize activated T cells to die via Fas   总被引:1,自引:0,他引:1  
In activated CD4(+) T cells, TCR restimulation triggers apoptosis that depends on interactions between the death receptor Fas and its ligand, FasL. This process, termed restimulation-induced cell death (RICD), is a mechanism of peripheral immune tolerance. TCR signaling sensitizes activated T cells to Fas-mediated apoptosis, but what pathways mediate this process are not known. In this study we identify the Rho GTPases Rac1 and Rac2 as essential components in restimulation-induced cell death. RNA interference-mediated knockdown of Rac GTPases greatly reduced Fas-dependent, TCR-induced apoptosis. The ability of Rac1 to sensitize T cells to Fas-induced apoptosis correlated with Rac-mediated cytoskeletal reorganization, dephosphorylation of the ERM (ezrin/radixin/moesin) family of cytoskeletal linker proteins, and the translocation of Fas to lipid raft microdomains. In primary activated CD4(+) T cells, Rac1 and Rac2 were independently required for maximal TCR-induced apoptosis. Activating Rac signaling may be a novel way to sensitize chronically stimulated lymphocytes to Fas-induced apoptosis, an important goal in the treatment of autoimmune diseases.  相似文献   

7.
The regulation of the two isoforms of phospholipase C-gamma, PLCgamma(1) and PLCgamma(2), by cell surface receptors involves protein tyrosine phosphorylation as well as interaction with adapter proteins and phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) generated by inositol phospholipid 3-kinases (PI3Ks). All three processes may lead to recruitment of the PLCgamma isozymes to the plasma membrane and/or stimulation of their catalytic activity. Recent evidence suggests that PLCgamma may also be regulated by Rho GTPases. In this study, PLCgamma(1) and PLCgamma(2) were reconstituted in intact cells and in a cell-free system with Rho GTPases to examine their influence on PLCgamma activity. PLCgamma(2), but not PLCgamma(1), was markedly activated in intact cells by constitutively active Rac1(G12V), Rac2(G12V), and Rac3(G12V) but not by Cdc42(G12V) and RhoA(G14V). The mechanism of PLCgamma(2) activation was apparently independent of phosphorylation of tyrosine residues known to be modified by PLCgamma(2)-activating protein-tyrosine kinases. Activation of PLCgamma(2) by Rac2(G12V) in intact cells coincided with a translocation of PLCgamma(2) from the soluble to the particulate fraction. PLCgamma isozyme-specific activation of PLCgamma(2) by Rac GTPases (Rac1 approximately Rac2 > Rac3), but not by Cdc42 or RhoA, was also observed in a cell-free system. Herein, activation of wild-type Rac GTPases with guanosine 5'-(3-O-thio)triphosphate caused a marked stimulation of PLCgamma(2) but had no effect on the activity of PLCgamma(1). PLCgamma(1) and PLCgamma(2) have previously been shown to be indiscriminately activated by PtdInsP(3) in vitro. Thus, the results suggest a novel mechanism of PLCgamma(2) activation by Rac GTPases involving neither protein tyrosine phosphorylation nor PI3K-mediated generation of PtdInsP(3).  相似文献   

8.
Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation. GTP-loading of Rac1 was maintained in CGNs by integrin-mediated (RGD-dependent) cell attachment and trophic support. Clostridium difficile toxin B (ToxB), a specific Rho family inhibitor, induced a selective caspase-mediated degradation of Rac1 without affecting RhoA or Cdc42 protein levels. Both ToxB and dominant-negative N17Rac1 elicited CGN apoptosis, characterized by cytochrome c release and activation of caspase-9 and -3, whereas dominant-negative N19RhoA or N17Cdc42 did not cause significant cell death. ToxB stimulated mitochondrial translocation and conformational activation of Bax, c-Jun activation, and induction of the BH3-only protein Bim. Similarly, c-Jun activation and Bim induction were observed with N17Rac1. A c-jun N-terminal protein kinase (JNK)/p38 inhibitor, SB203580, and a JNK-specific inhibitor, SP600125, significantly decreased ToxB-induced Bim expression and blunted each subsequent step of the apoptotic cascade. These results indicate that Rac acts downstream of integrins and growth factors to promote neuronal survival by repressing c-Jun/Bim-mediated mitochondrial apoptosis.  相似文献   

9.
Small GTP-binding Rho GTPases regulate important signaling pathways in endothelial cells, but little is known about their role in endothelial cell apoptosis. Clostridial cytotoxins specifically inactivate GTPases by glucosylation [Clostridium difficile toxin B-10463 (TcdB-10463), C. difficile toxin B-1470 (TcdB-1470)] or ADP ribosylation (C. botulinum C3 toxin). Exposure of human umbilical cord vein endothelial cells (HUVEC) to TcdB-10463, which inhibits RhoA/Rac1/Cdc42, or to C3 toxin, which inhibits RhoA, -B, -C, resulted in apoptosis, whereas inactivation of Rac1/Cdc42 with TcdB-1470 was without effect, suggesting that Rho inhibition was responsible for endothelial apoptosis. Disruption of endothelial microfilaments as well as inhibition of p160ROCK did not induce endothelial apoptosis. Exposure to TcdB-10463 resulted in activation of caspase-9 and -3 but not caspase-8 in HUVEC. Moreover, Rho inhibition reduced expression of antiapoptotic Bcl-2 and Mcl-1 and increased proapoptotic Bid but had no effect on Bax or FLIP protein levels. Caspase-3 activity and apoptosis induced by TcdB-10463 were abolished by cAMP elevation. In summary, inhibition of Rho in endothelial cells activates caspase-9- and -3-dependent apoptosis, which can be antagonized by cAMP elevation.  相似文献   

10.
Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by some pathogenic strains of Escherichia coli that specifically activates Rho, Rac, and Cdc42 GTPases. We previously reported that this toxin prevents the ultraviolet-B-induced apoptosis in epithelial cells, with a mechanism that remained to be defined. In this work, we show that the proteasomal degradation of the Rho GTPase is necessary to achieve cell death protection, because inhibition of Rho degradation abolishes the prosurvival activity of CNF1. We hypothesize that Rho inactivation allows the activity of Rac to become dominant. This in turn leads to stimulation of the phosphoinositide 3-kinase/Akt/IkappaB kinase/nuclear factor-kappaB prosurvival pathway and to a remarkable modification in the architecture of the mitochondrial network, mainly consisting in the appearance of elongated and interconnected mitochondria. Importantly, we found that Bcl-2 silencing reduces the ability of CNF1 to protect cells against apoptosis and that it also prevents the CNF1-induced mitochondrial changes. It is worth noting that the ability of a bacterial toxin to induce such a remodeling of the mitochondrial network is herein reported for the first time. The possible pathophysiological relevance of this finding is discussed.  相似文献   

11.
Lethal toxin (LT) from Clostridium sordellii (strain IP82) inactivates in glucosylating the small GTPases Ras, Rap, Ral and Rac. In the present study we show that LT-IP82 induces cell death via an intrinsic apoptotic pathway in the myeloid cell-line HL-60. LT-IP82 was found to disrupt mitochondrial homeostasis as characterized by a decrease in mitochondrial transmembrane potential and cardiolipin alterations, associated with the release of cytochrome c in the cytosol. Time-course studies of caspase activation revealed that caspase-9 and caspase-3 were activated before caspase-8. Moreover, although LT-IP82-induced cell death was abrogated by caspase-inhibitors, these inhibitors did not suppress mitochondrial alterations, indicating that caspase activation occurs downstream of mitochondria. Protection of mitochondria by Bcl-2 overexpression prevented mitochondrial changes as well as apoptosis induction. Furthermore, evidence is provided that LT-IP82-induced apoptosis is not a consequence of cortical actin disorganization, suggesting that Rac inactivation does not initiate the apoptotic process. Cell exposure to LT-IP82 leads to a co-localization of the toxin with a mitochondrial marker within 2 h. Therefore, we suggest that LT-IP82 could act at the mitochondrion level independently of its enzymatic effect on small GTPases.  相似文献   

12.
Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), are known to accelerate the growth of gastric and colorectal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide controls apoptosis by regulation of proteins of the Bcl-2 family and by regulation of the activation of caspases. However the interactions between Ggly and proteins of the Bcl-2 family and caspases are not known. Since in other systems G proteins of the Rho family inhibit apoptosis via interaction with proteins of the Bcl-2 family, leading to changes in caspase activities, we have compared the role of Rho family G proteins in regulation of Bcl-2-like (Bad/Bax/Bcl-xl) protein expression and caspase 3 activation by Ggly and Gamide. The effects of the specific inhibitors C3 (for Rho) and Y-27632 (for ROCK), and of dominant negative mutants of Rac, Cdc42 and PAK, were investigated in the gastric epithelial cell line IMGE-5. Apoptosis was induced by serum starvation and confirmed by annexin V staining and caspase 3 activation. Ggly inhibits caspase 3 activation via a Bcl-2-like protein-mediated pathway which requires activation of both Rho/ROCK and Rac/Cdc42/PAK. Gamide inhibits caspase 3 activation via redundant Bcl-2-like protein-mediated pathways which involve alternative activation of Rac/Cdc42/PAK and Rho/ROCK. Gamide and Ggly differentially activate members of Rho family G proteins which in turn regulate different proteins of the Bcl-2 family leading to changes in caspase 3 activity. The findings offer potential targets for blocking the growth-stimulating effects of these gastrins.  相似文献   

13.
Rac1 protects epithelial cells against anoikis   总被引:6,自引:0,他引:6  
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.  相似文献   

14.
Inactivation of different small GTPases upon their glucosylation by lethal toxin from Clostridium sordellii strain IP82 (LT‐82) is already known to lead to cell rounding, adherens junction (AJ) disorganization and actin depolymerization. In the present work, we observed that LT‐82 induces a rapid dephosphorylation of paxillin, a protein regulating focal adhesion (FA), independently of inactivation of paxillin kinases such as Src, Fak and Pyk2. Among the small GTPases inactivated by this toxin, including Rac, Ras, Rap and Ral, we identified Rac1, as responsible for paxillin dephosphorylation using cells overexpressing Rac1V12. Rac1 inactivation by LT‐82 modifies interactions between proteins from AJ and FA complexes as shown by pull‐down assays. We showed that in Triton X‐100‐insoluble membrane proteins from these complexes, namely E‐cadherin, β‐catenin, p120‐catenin and talin, are decreased upon LT‐82 intoxication, a treatment that also induces a rapid decrease in cell phosphoinositide content. Therefore, we proposed that Rac inactivation by LT‐82 alters phosphoinositide metabolism leading to FA and AJ complex disorganization and actin depolymerization.  相似文献   

15.
目的:观察ω-3多不饱和脂肪酸(ω-3 Polyunsaturated fatty acid,ω-3 PUFA)对人前列腺癌PC-3细胞和乳腺癌MDA-MB-231细胞Rho蛋白翻译后修饰的影响。方法:60μmol/L的二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahex-aenoic acid,DHA)处理PC-3和MDA-MB-231细胞24h后,检测EPA和DHA对法尼基蛋白转移酶活性的影响,对Rho蛋白的法尼基化修饰的影响,对Rho蛋白与GTP结合能力的影响。结果:EPA及DHA均能显著下调PC-3和MDA-MB-231细胞法尼基蛋白转移酶活性(P<0.01),抑制Rho蛋白(RhoA、Rac1、Rac2和Cdc42)的法尼基化修饰(P<0.01),并降低PC-3细胞Rho蛋白(RhoA、Rac1和Cdc42)与GTP的结合能力(P<0.05)。结论:ω-3 PUFA可能通过抑制肿瘤细胞Rho蛋白翻译后修饰,而影响肿瘤细胞的生物学特性。  相似文献   

16.
beta2-Chimerin is a member of the "non-protein kinase C" intracellular receptors for the second messenger diacylglycerol and the phorbol esters that is yet poorly characterized, particularly in the context of signaling pathways involved in proliferation and cancer progression. beta2-Chimerin possesses a C-terminal Rac-GAP (GTPase-activating protein) domain that accelerates the hydrolysis of GTP from the Rac GTPase, leading to its inactivation. We found that beta2-chimerin messenger levels are significantly down-regulated in human breast cancer cell lines as well as in breast tumors. Adenoviral delivery of beta2-chimerin into MCF-7 breast cancer cells leads to inhibition of proliferation and G(1) cell cycle arrest. Mechanistic studies show that the effect involves the reduction in Rac-GTP levels, cyclin D1 expression, and retinoblastoma dephosphorylation. Studies using the mutated forms of beta2-chimerin revealed that these effects were entirely dependent on its C-terminal GAP domain and Rac-GAP activity. Moreover, MCF-7 cells stably expressing active Rac (V12Rac1) but not RhoA (V14RhoA) were insensitive to beta2-chimerin-induced inhibition of proliferation and cell cycle progression. The modulation of G(1)/S progression by beta2-chimerin not only implies an essential role for Rac in breast cancer cell proliferation but also raises the intriguing possibility that diacylglycerol-regulated non-protein kinase C pathways can negatively impact proliferation mechanisms controlled by Rho GTPases.  相似文献   

17.
Chemotherapeutic drug-induced apoptosis of human malignant glioma cells involves the death receptor-independent activation of caspases other than caspases 3 or 8 (Glaser et al., Oncogene 18, 5044-5053, 1999). Here, we report that caspases 1, 2, 3, 7, 8, and 9 are constitutively expressed in most human malignant glioma cell lines. Cytotoxic drug-induced apoptosisinvolves delayed activation of caspases 2, 7, and 9, but not 8 and 3, and is blocked by a broad spectrum caspase inhibitor, zVAD-fmk. Cytochrome c release from mitochondria precedes caspase activation during drug-induced apoptosis and is unaffected by zVAD-fmk or ectopic expression of the viral caspase inhibitor, crm-A. In contrast, ectopic expression of BCL-X(L) prevents drug-induced cytochrome c release, caspase activation and cell death. Thus, cancer chemotherapy targets the mitochondrial, caspase-dependent death pathway in human malignant glioma cells.  相似文献   

18.
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.  相似文献   

19.
Zhou X  Suto S  Ota T  Tatsuka M 《Radiation research》2004,162(3):287-295
LyGDI inhibits the dissociation of GDP from Rho family GTPases and is found in abundance in hematopoietic cells. Here we report truncation of LyGDI after irradiation in mouse 3SB thymus cells. A 21-kDa fragment of LyGDI, resulting from activated caspase 3-induced cleavage at an N-terminal consensus site following the Asp(18) residue, accumulated at peak quantities between 5 and 12 h after irradiation. Cleavage of LyGDI was inhibited by the caspase inhibitor benzoyloxycarbonyl-Val-Asp-fluoromethylketone. Subcellular fractionation and immunofluorescence revealed the truncated 21-kDa fragment of LyGDI within the nuclear fraction of irradiated 3SB cells, whereas full-length LyGDI was found only in the cytoplasmic fraction. Truncated LyGDI within the nucleus had no association with the Rho family proteins RhoA and Rac1, since these proteins were observed only in the cytoplasmic fractions. These data demonstrate that regulation of Rho family GTPases by LyGDI is disrupted during apoptosis, suggesting that fragmentation of LyGDI implicates the transmission of a signal from the cytoplasm to the nucleus during Trp53-dependent apoptosis of thymus cells after irradiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号