首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were designed to test the hypothesis that sperm nuclear decondensation and male pronuclear formation during hamster fertilization depend upon the ability of the fertilized oocyte to reduce sperm nuclear disulfide bonds. In a first series of experiments, treatment of mature oocytes with the sulfhydryl blocking agent iodoacetamide or the glutathione oxidant diamide caused a dose-dependent inhibition of decondensation in microinjected sperm nuclei. Inhibition of decondensation was not observed, however, when sperm nuclei were treated in vitro with dithiothreitol (DTT) to reduce disulfide bonds prior to their microinjection. In a second series of experiments, germinal vesicle (GV)-intact oocytes and pronuclear eggs, in which mature, disulfide-rich sperm nuclei do not decondense, were found to support the decondensation of disulfide-poor DTT-treated sperm nuclei or testicular spermatid nuclei. The decondensed sperm nuclei were not, however, transformed into male pronuclei. The results of these studies suggest: (1) that sperm nuclear decondensation in the hamster requires disulfide bond reduction, (2) that GV-intact oocytes and pronuclear eggs lack sufficient reducing power to effect sperm nuclear decondensation, and (3) that disulfide bond reduction is required but not sufficient for pronuclear formation.  相似文献   

2.
Bovine immature oocytes cultured for various times in TC-199 medium were inseminated with frozen-thawed spermatozoa in Medium BO with caffeine (5 mM) and heparin (10 micrograms/ml). Very high penetration rates (95-100%) were obtained in all oocytes which had been cultured for 0-20 h. When oocytes cultured for 0 and 4 h were inseminated, 100% of them were penetrated and had a decondensing sperm head and most of the oocytes remained at the stage of condensed germinal vesicle (GV) to telophase-I 20-22 h after insemination. The formation of male and female pronuclei was first observed in oocytes inseminated 8 h after culture. The proportions of polyspermy and average number of spermatozoa in penetrated oocytes gradually decreased as oocyte maturation proceeded. Penetration of at least one spermatozoon with a decondensing head into oocytes at the GV stage (without culture) was almost completed up to 8 h after insemination and at that time most of the penetrated oocytes were still at the stage of GV or condensed GV. These results indicate that maturation of bovine oocytes is not required for sperm penetration into the vitellus or for sperm nuclear decondensation under the in-vitro conditions used.  相似文献   

3.
The processes occurring from sperm penetration to chromosome formation in the cytoplasm of Oocytes matured in vitro, after removal of the germinal vesicle (GV) and before hormonal stimulation, were observed with electron microscope. The dechorionated oocytes, matured without the participation of the GV material, responded to sperm penetration by initiating a cortical reaction within 20 seconds after insemination. The pentrating sperm nuclei transformed to male pronuclei with vesiculation of the nuclear membrane, chromatin decondensation, and formation of a pronuclear membrane. Before cleavage, however, no chromosome formation was observed in these oocytes. Instead, the fully grown pronuclei change to a picnotic chromatin mass without or with an only fragmented nuclear membrane, then disappeared. On the contrary, sperm nuclei that penetrated into the cytoplasm of naked eggs containing GV material during maturation underwent pronuclear and chromosomal formation. Judging from these observation in Oryzias oocytes, the GV material seems to be unnecessary for the formation of pronucleus from the compact sperm nucleus, but is essential for the process of chromosomal formation.  相似文献   

4.
The chromatin of Xenopus laevis sperm nuclei was induced to decondense, swell and form mitotic chromosomes following its injection into mature Rana pipiens oocytes. In contrast, the sperm chromatin did not decondense or form mitotic chromosomes when injected into oocytes from which the germinal vesicle (GV) was removed prior to the initiation of maturation. Injection into enucleated oocytes of the material extracted from manually-isolated GVs restored their ability to decondense sperm nuclei. This soluble GV material was stable at 18 °C for 16 h but was inactivated by heating to 80 °C for 10 min. We examined the distribution of this GV material in a cytoplasmic preparation from activated eggs which can induce sperm pronuclear formation in vitro. The cytoplasmic preparation was separated into soluble and particulate fractions by centrifugation and then each fraction was injected into enucleated eggs to determine whether or not it restored the ability to decondense sperm nuclei. We found that the soluble, but not the particulate fraction could restore the ability to decondense sperm nuclei to enucleated oocytes. This result clearly indicates that the soluble fraction contains most of the GV material required for chromatin decondensation. However, since the soluble fraction fails to decondense sperm chromatin in vitro in the absence of material from the paticulate fraction, sperm pronuclear formation appears to require both the soluble material derived from the GV and particulate material which can develop in the oocyte cytoplasm in the absence of the GV.  相似文献   

5.
The presence of γ-glutamyl transpeptidase (GGT) in boar spermatozoa and the potential role of the GGT at sperm penetration were examined using in vitro matured porcine oocytes. In the first experiment, GGT of boar spermatozoa was examined using a histochemical stain. GGT was detected in the midpiece and the acrosome regions of boar spermatozoa. In the second experiment, porcine oocytes matured in vitro were injected with approximately 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT or 1 mM guanosine-5′-0-(3′-thiotriphosphate) (GTP-γ-S; G-protein activator). When GGT was injected into oocytes, the incidence of oocytes activated (23.7 ± 1.4%) was not different (P > 0.05) from HEPES-injected controls (24.9 ± 1.3%) at 6 h after injection. Injected GTP-γ-S, however, activated 76.0 ± 5.3% of oocytes at 6 h after injection, but extrusion of the second polar body was very low (2.8 ± 4.8%). Total content of glutathione (GSH) and glutathione disulfide (GSSG) did not differ (P > 0.05) between GTP-γ-S injected oocytes (4.2 ± 0.7 pmol/oocyte) and noninjected oocytes (4.0 ± 0.1 pmol/oocyte) at 6 h after injection. However, the total content of GSH and GSSG was lower (P < 0.01) in GGT-injected oocytes (2.1 ± 0.2 pmol/oocyte) than HEPES-injected oocytes (3.4 ± 0.2 pmol/oocyte) at 6 h after injection. In the third experiment, in vitro matured porcine oocytes were injected with about 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT and then inseminated. At 12 h after insemination, the incidence of male pronuclear formation was significantly lower in oocytes injected with GGT as compared with injected control oocytes. These results demonstrated that (1) GGT was present on the surface of spermatozoa, (2) total oocyte content of GSH and GSSG was decreased by microinjection of GGT but not by that of GTP-γ-S, and (3) male pronuclear formation was inhibited in GGT-injected oocytes. These results suggest that sperm GGT may be a limiting factor for male pronuclear formation in polyspermic oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

6.
To elucidate the effects of ooplasmic factors on the early morphological changes in hamster sperm heads within the ooplasm, immature ovarian oocytes at the germinal vesicle stage (GV oocytes), ovulated fully mature oocytes, and fertilized eggs at anaphase II or the pronuclear stage (PN eggs) were examined in detail 15–30 min after insemination or reinsemination. Thin-sectioning studies demonstrated distinct materials released from the sperm nucleus over the entire postacrosomal nuclear surface immediately after disappearance of the sperm nuclear envelope. The release occurred in all of the oocytes and eggs prior to or even in the absence of subsequent chromatin decondensation. Depending upon the stage of the penetrated oocyte or egg, however, the materials varied in morphology: several hemispherical projections of amorphous material within mature oocytes; a number of electron-dense globules within GV oocytes and PN eggs; and both forms within eggs at anaphase II-telophase II. These observations and the fact that only the release of the amorphous material was accompanied by sperm chromatin decondensation indicate that this release was the initial process of chromatin decondensation, whereas the release of the globules resulted from a deficiency or lack of ooplasmic factors affecting the sperm nucleus. Restriction of the release in both forms of material to the late meiotic phase suggests changes in the factors associated with progression of meiosis. To approach an understanding of the mechanism of successful decondensation of sperm chromatin, the ooplasmic factors considered responsible for the stage-dependent release of nuclear materials are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.  相似文献   

8.
The ultrastructure of oocyte and sperm nuclei was studied in mouse ovarian oocytes inseminated in vitro and cultured for 1 1/2 and 3 h in a medium containing dbcAMP or lacking the maturation inhibitor. In oocytes blocked at the germinal vesicle (GV) stage, certain maturation-linked changes were noted. Sperm apposition and sperm-oocyte fusion were similar to that during fertilization of ovulated oocytes. The sperm nucleus and its nuclear envelope remained intact after penetrating into the ovarian oocyte. One and a half h after removal of the drug (time 0 of maturation) the germinal vesicle (GV) and sperm nucleus remained intact. In oocytes maturing for 3 h, the nuclear envelopes of the GV and sperm nucleus had fragmented. The NE of the oocyte formed quadruple membranes while the NE of the sperm remained as flat vesicles. Oocyte chromatin condensed to form chromosomes, whereas at the same time the sperm chromatin was in the process of decondensation and was surrounded by fragments of the sperm NE. The sperm chromatin, composed of DNA complexed with protamines, consisted of thin fibrils; the individual fibrils measured 3.8 nm in diameter. Near the penetrated spermatozoa only occasional Mts were detected which were not related to the proximal centriole which was recognizable in the neck-piece of the flagellum. Thus in mouse oocytes the introduced sperm centriole is not capable of behaving as a centrosome and organizing microtubules in the form of an aster.  相似文献   

9.
Coy P  Ruiz S  Romar R  Campos I  Gadea J 《Theriogenology》1999,51(4):799-812
This study was designed 1) to determine the effectiveness of 2 in vitro maturation systems commonly employed to produce nuclear and cytoplasmically mature pig oocytes, 2) to assess the effects of boar, sperm concentration and maturation system on oocyte penetrability and male pronucleus formation and 3) to determine the ability of the in vitro matured oocytes to be fertilized in vivo by artificial insemination (AI) of sows. The differences examined between the 2 maturation systems included the culture medium (Waymouth vs TCM199), hormones, additives, culture conditions (static vs gentle agitation) presence or absence of porcine follicular fluid (PFF) and presence or absence of follicular shells. The results showed that nuclear maturation rate was similar in both systems (83.3 +/- 3.5 vs 86.4 +/- 2.5%), and intracellular content of glutathione was 5.21 +/- 0.73 vs 3.5 +/- 0.39 pmol/oocyte, although no correlation between these parameters was observed. The penetration rate and number of sperm cells per oocyte were dependent on the boar, maturation system and sperm concentration, but the rate of male pronuclear formation seemed to be influenced only by the boar and the maturation system but not by sperm concentration. In vivo fertilization of in vitro matured oocytes showed that both maturation systems could yield viable oocytes since 3 of 4 gilts and 2 of 4 gilts, respectively, became pregnant. Failure to become pregnant was not associated with inadequate oocyte maturation since control gilts, which received their own ovulated oocytes rather than in vitro matured oocytes at transfer, also did not become pregnant. We conclude that polyspermy may be an inherent problem in the IVF but not in the IVM systems.  相似文献   

10.
Leptin, a multifunctional hormone, is present in mammalian oocytes and follicular fluids and cumulus cells. While leptin modulates oocyte maturation in vitro which seems to result in enhancement of embryo development, it is unclear whether leptin treatment of oocytes affects cytoplasmic maturation and fertilization processes. In order to gain a better understanding of the role of leptin during oocyte maturation, we examined microtubule and microfilament assembly following oocyte maturation and blastocyst formation, mitogen-activated protein kinase (MAPK) activity, and pronuclear formation following parthenogenetic stimuli or intracytoplasmic sperm injection (ICSI) in leptin-treated oocytes. Addition of 10 or 100 ng/ml leptin during oocyte maturation did not increase the proportion of metaphase II oocytes, but enhanced development to blastocyst stage by day 7 (P < 0.01) after parthenogenetic activation (PA), accompanied by increased cell number. However there was no effect on the number of apoptotic cells in blastocysts. Following maturation in the presence of leptin, there were more oocytes with normal spindle formation. MAPK activity decreased more rapidly, and pronuclear formation was accelerated after parthenogenetic activation or ICSI of leptin-treated oocytes. These results suggested that exogeneous leptin enhanced spindle assembly and accelerated pronuclear formation following fertilization, possibly via the MAPK pathway.  相似文献   

11.
The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, beta-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 microM BME, 0.5 microgram/ml LH, 0.5 microgram/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5-6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78-89%). The mean differences in penetration rate (69-77%), polyspermy rate (31-40%), male pronuclear formation rate (93-96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32-39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13-15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.  相似文献   

12.
Glutathione (GSH) is thought to play critical roles in oocyte function including spindle maintenance and provision of reducing power needed to initiate sperm chromatin decondensation. Previous observations that GSH concentrations are higher in mature than immature oocytes and decline after fertilization, suggest that GSH synthesis may be associated with cell cycle events. To explore this possibility, we measured the concentrations of GSH in Golden Hamster oocytes and zygotes at specific stages of oocyte maturation and at intervals during the first complete embryonic cell cycle. Between 2 and 4 hr after the hormonal induction of oocyte maturation, GSH concentrations increased significantly (approximately doubling) in both oocytes and their associated cumulus cells. This increase was concurrent with germinal vesicle breakdown and the condensation of metaphase I chromosomes in the oocyte. GSH remained high in ovulated, metaphase II (MII) oocytes, but then declined significantly, by about 50%, shortly after fertilization, as the zygote progressed back into interphase (the pronucleus stage). GSH concentrations then plummeted by the two-cell embryo stage and remained at only 10% of those in MII oocytes throughout pre-implantation development. These results demonstrate that oocyte GSH concentrations fluctuate with the cell cycle, being highest during meiotic metaphase, the critical period for spindle growth and development and for sperm chromatin remodeling. These observations raise the possibility that GSH synthesis in maturing oocytes is regulated by gonadotropins, and suggest that GSH is more important during fertilization than during pre-implantation embryo development.  相似文献   

13.
In vitro matured porcine oocytes were used to test the importance of protein synthesis for sperm penetration, the second meiotic division, and pronuclear development. Experiments were carried out to measure rates of protein synthesis in the presence of protein synthesis inhibitors (35 microM or 350 microM cycloheximide or a combination of inhibitors) (study 1); to test for sperm penetration and pronuclear development when protein synthesis was inhibited during fertilization (study 2); to test for oocyte meiosis, sperm penetration, and female and male pronuclear development when protein synthesis was inhibited during maturation (oocyte maturation in vitro with addition of inhibitor at 0, 24, or 36 hr of culture) (study 3); and to analyze the changes in the pattern of protein synthesis during these phases. Sperm penetration, oocyte meiosis, and female pronuclear development were not affected by the total inhibition of protein synthesis during fertilization. By contrast, inhibiting protein synthesis during maturation severely impaired the completion of meiosis and pronuclear development. Although inhibition of protein synthesis after 36 hr of maturation culture did not totally block male pronuclear development (MPN), the rate of MPN formation was lower than for controls (52% vs. 72%, P less than 0.05). However, protein synthesis was absolutely essential between 24 and 36 hr for the formation of MPN after decondensation. This period of maturation coincided with the dominant phase of protein reprogramming in the oocyte.  相似文献   

14.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

15.
Cumulus cells of the oocyte play important roles in in vitro maturation and subsequent development. One of the routes by which the factors are transmitted from cumulus cells to the oocyte is gap junctional communication (GJC). The function of cumulus cells in in vitro maturation of porcine oocytes was investigated by using a gap junction inhibitor, heptanol. Cumulus-oocyte complexes (COCs) were collected from the ovaries of slaughtered gilts by aspiration. After selection of COCs with intact cumulus cell layers and uniform cytoplasm, they were cultured in a medium with 0, 1, 5, or 10 mM of heptanol for 48 h. After culture in vitro, one group of oocytes was assessed for nuclear maturation and glutathione (GSH) content, and another group was assigned to in vitro fertilization and assessed for the penetrability of oocytes and the degree of progression to male pronuclei (MPN) of penetrated spermatozoa. At the end of in vitro maturation, the oocytes reached metaphase II at a high rate (about 80%) regardless of the presence of heptanol at various concentrations. Cumulus cell expansion and the morphology of oocytes cultured in the medium with heptanol were similar to those of control COCs matured without heptanol. The amount of GSH in cultured oocytes tended to decrease as the concentration of heptanol in the medium was increased. Although there was no difference in the rates of penetrated oocytes cultured in media with different concentrations of heptanol, the proportion of oocytes forming MPN after insemination decreased significantly (P < 0.01) at all concentrations tested. A higher rate of sperm (P < 0.01) failed to degrade their nuclear envelopes after penetration into the oocytes that were treated with heptanol. GJC between the oocyte and cumulus cells might play an important role in regulating the cytoplasmic factor(s) responsible for the removal of sperm nuclear envelopes as well as GSH inflow from cumulus cells.  相似文献   

16.
We have studied the chromosome condensation activity of mouse oocytes that have been inseminated during meiotic maturation. These oocytes remain unactivated, and in those penetrated by up to three or four sperm, each sperm nucleus is transformed, without prior development of a pronucleus, into metaphase chromosomes. However, those penetrated by more than four sperm never transform any of the nuclei into metaphase chromosomes (Clarke, H. J., and Y. Masui, 1986, J. Cell Biol. 102:1039-1046). We report here that, when the cytoplasmic volume of oocytes was doubled or tripled by cell fusion, up to five or eight sperm nuclei, respectively, could be transformed into metaphase chromosomes. Conversely, when the cytoplasmic volume was reduced by bisection of oocytes after the germinal vesicle (GV) had broken down, no more than two sperm could be transformed into metaphase chromosomes. Thus, the capacity of the oocyte cytoplasm to transform sperm nuclei to metaphase chromosomes was proportional to its volume. The contribution of the nucleoplasm of the GV and the cytoplasm outside the GV to the chromosome condensation activity was investigated by bisecting oocytes that contained a GV and then inseminating the nucleate and anucleate fragments. The anucleate fragments never induced sperm chromosome formation, indicating that GV nucleoplasm is required for this activity. In the nucleate fragments, the capacity to induce sperm chromosome formation was reduced as compared with whole oocytes, in spite of the fact that the fragments contained the entire GV nucleoplasm. This implies that non-GV cytoplasmic material also was required for chromosome condensation activity. When inseminated oocytes were incubated in the presence of puromycin, the sperm nuclei were transformed into interphase-like nuclei, but no metaphase chromosomes developed. However, when protein synthesis resumed, the interphase nuclei were transformed to metaphase chromosomes. These results suggest that the transformation of sperm nuclei to metaphase chromosomes in the cytoplasm of mouse oocytes requires both the nucleoplasm of the GV and non-GV cytoplasmic substances, including proteins synthesized during maturation.  相似文献   

17.
Cortical granules (CGs) undergo a substantial change in distribution in the mouse oocyte cortex during meiotic maturation. In order to determine the mechanism of their change in distribution near the time of ovulation, CG density, total number per oocyte, and domain areas were quantitated. CGs were visualized microscopically by Lens culinaris agglutinin-biotin and Texas red-strepavidin fluorescence as well as by electron microscopy. Immature germinal vesicle stage (GV) oocytes from adult mice had a continuous cortical localization with some interior granules. Mature oocytes had an asymmetric cortical distribution with a CG-free domain, overlying the meiosis II metaphase spindle, occupying 40% of the cortex. The mean CG densities of the granule-occupied cortex of mature oocytes and the entire cortex of GV oocytes were 43 and 34 CGs/100 micron 2, respectively. The mean total numbers of CGs/oocyte were 4127 (mature) and 7440 (GV), and staining was absent in fertilized oocytes with two pronuclei. Calcium ionophore (A23187)-activated mature oocytes had a mean total number of 1235 CGs, some of which may have been in the process of exocytosis. The first polar body had few CGs, and thus was unlikely to account for the difference in CG number between GV and mature oocytes. The smaller total number and higher density of CGs in mature mouse oocytes suggests that both exocytosis and redistribution are plausible mechanisms for the development of the CG-free domain. Prefertilization exocytosis could account for the locus of sperm penetration which others have reported to occur in the hemisphere opposite the meiotic spindle in the mouse.  相似文献   

18.
Detergent-pretreated spermatozoa of the toad, Bufo bufo japonicus, transform into pronuclei when injected into progesterone-matured oocytes at 18 hr post-hormone treatment (PHT). These sperm, however, do not show any change when injected into the oocytes at the same age from which the germinal vesicle (GV) has been removed before the progesterone treatment. In an attempt to determine when and how the pronucleus-inducing activity (PIA) develops in hormonally induced maturation process, enucleated oocytes were injected with GV and sperm at various stages after the hormone treatment and electrically stimulated at 18 hr PHT. It was found that sperm pronuclei are induced only in those oocytes receiving GV before 14 hr PHT. The 1 hr pulse-treatment of maturing oocytes with cycloheximide between 8–18 hr PHT and the injection of sperm at 18 hr PHT revealed that PIA does not occur in the oocytes treated with the inhibitor during 10–14 hr PHT. Injection of α-amanitin into maturing oocytes had no effect in this respect. Determination of DNA synthetic activity in vitro of the oocyte extracts from various maturation stages showed that the net increase of the activity occurs before the formation of PIA. The activity of the cycloheximide-treated oocyte extracts utilizing native DNA did not correlate with the sensitivity of oocytes to the inhibitor with respect to PIA in situ. It is concluded that PIA develops, in association with the GV materials, by way of translational events at 10–14 hr PHT, being quiescent during later maturation stages, and commences to function as an activation response of oocytes at 18 hr PHT.  相似文献   

19.
The present study was carried out to establish porcine defined IVP. In Experiments 1 and 2, we investigated the efficacy of additional 0.6 mM cystine and/or 100 microM cysteamine (Cys) to a defined TCM199 maturation medium with regard to the intracellular glutathione (GSH) concentration and the developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The control medium was a modified TCM199 containing 0.05% (w/v) polyvinyl alcohol (PVA). Cys and/or cystine were added to the control medium. The control group and immature oocytes (presumptive germinal vesicle oocytes; GV) were prepared for GSH assay. In Experiment 3, the efficacy of epidermal growth factor (EGF) addition to a modified porcine zygote medium (mPZM) for in vitro culture (IVC) medium was investigated on embryonic development and the mean cell number of blastocysts following ICSI. As a positive or negative control, 0.3% BSA (mPZM-3) or 0.3% PVA (mPZM-4), respectively, was added to the base medium. The defined IVC medium was supplemented with 5 or 10 ng/ml EGF. In Experiment 1, no significant difference was found in the rates of cleavage (31.4-64.3%) and blastocyst formation (6.5-22.9%) among the treatment and control groups. The mean cell numbers per blastocyst ranged from 30 to 48 among the groups without significant differences. However, in Experiment 2, the intracellular GSH concentrations in the oocytes cultured in the medium supplemented with 100 microM Cys (9.6 pmol/oocyte) or Cys + cystine (9.9 pmol/oocyte) were significantly (p < 0.05) higher than the control (2.5 pmol/oocyte) and 0.6 mM cystine (6.5 pmol/oocyte) groups, but not different from the GV group (9.0 pmol/oocyte). The GSH concentration in the cystine group was also significantly (p < 0.05) higher than that in the control group, but not different from the GV group. In Experiment 3, the rates of cleavage and blastocyst formation and the mean cell numbers of blastocysts were not significantly different among the groups. However, the addition of 5 ng/ml EGF into the mPZM-4 resulted in a significantly (p < 0.05) higher blastocyst rate per cleaved embryo than the other two defined groups (mPZM-4 + 5 ng/ml: 48.6%, mPZM-4 and mPZM-4 +10 ng/ml: 23.4% and 23.1%, respectively).The present results indicate that the addition of Cys to a defined medium for in vitro maturation (IVM) of porcine oocytes increases intracellular GSH concentration. Further addition of cystine into the IVM medium containing 100 microM Cys is not necessary and TCM199 plus Cys (100 microM) could be used as a defined IVM medium for porcine oocytes. The addition of 5 ng/ml EGF to a defined IVC medium has enhanced subsequent development after ICSI. This study shows that porcine blastocysts can be produced by defined media throughout the steps of IVP (IVM, ICSI and IVC).  相似文献   

20.
It is generally accepted that cumulus cells support the nuclear maturation of mammalian oocytes. In the present study, we examined relationships between the cytoplasmic glutathione (GSH) content of porcine oocytes, and oocyte nuclear maturation, fertilization or subsequent embryonic development. Cumulus-oocyte complexes (COCs; control group) and oocytes denuded of cumulus cells after collection (DO 0h group) were cultured for 24h with dibutyryl cAMP, eCG and hCG (first culture step) and then for a further 20h without supplements (second culture step; 44h total culture). After the first culture step, some of the COCs were denuded, either completely (DO 24h group) or partly (H-DO 24h group), and then matured by the second culture step. Also, in the second culture step, some DOs were co-cultured with cumulus cells that had been pre-cultured for 24h (DO 24h+CC group). The maturation rates of all the cumulus-removed groups (DO 0h, DO 24h, H-DO 24h and DO 24h+CC groups) were lower (34.3-45.0%) than that of the control group (64.5%; P<0.05). The GSH contents of matured oocytes in the completely denuded groups (DO 0h, DO 24h and DO 24h+CC groups) were lower (4.03-5.26pmol/oocyte) than that of the control group (9.60pmol/oocyte; P<0.05); however, the H-DO 24h group had an intermediate value (7.0pmol/oocyte). The male pronuclear formation rates of completely denuded oocytes were lower (41.4-59.3%) than that of the control group (89.4%; P<0.05), whereas the H-DO 24h group had an intermediate rate (80.0%). The blastocyst formation rates of the completely denuded oocytes were lower (3.0-4.5%) than that of the control group (19.9%; P<0.05), and the H-DO 24h group again had an intermediate rate (11.6%). The GSH content was correlated with the rates of male pronuclear formation (P<0.01) and blastocyst formation (P<0.01), and also with the number of cells per blastocyst (P<0.01). In conclusion, we inferred that GSH synthesized by intact cumulus cells during maturation culture improved oocyte maturation and played an important role in fertilization and embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号