首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Effects of temperature and salinity on the growth of the two agarophytes, Gracilaria verrucosa (Hudson) Papenfuss and Gracilaria chorda Holmes were examined in Korea. Both species grew over a wide range of temperatures (10–30 C) and salinities (5–35‰), and grew well at 17–30 C and a salinity of 15–30‰. In culture, G. verrucosa grew faster than G. chorda and their maximum growth rates were 4.95% day−1 (30 C, 25‰) and 4.47% day−1 (at 25 C, 25‰), respectively. In the field population the maximum growth and fertility of G. chorda were observed in summer. The growth rate of G. verrucosa was slightly higher than that of G. chorda for 2 weeks on the cultivation rope and in culture but it was much lower after being contaminated with epiphytes. The biomass of the epiphytes was 0.82 g dry wt. per host plant in G. verrucosa and 0.001 g in G. chorda. G. chorda exhibited resistance to epiphytism and grew 7 times in length and the dry weight increased 15 times after 55 days. In conclusion, G. chorda appears to be a good agarophyte with a fast growth rate and resistance to epiphytesm, and compared with G. verrucosa, has good potential for commercial cultivation.  相似文献   

2.
Gracilaria is a potentially valuable source of marine biopolymers such as proteins and polysaccharides. In order to select suitable culture conditions, growth and tolerance of Gracilaria chorda Holmes from Shikoku Island in southwest Japan were investigated under variations of temperature (5–30 C), photon irradiance (20–120 μmol photons m−2 s−1), and photoperiod (12:12 h, 14:10 h light:dark regime) in a unialgal culture. Gracilaria chorda showed wide tolerances for all factors investigated, which is characteristic of eurythermal species. Maximum growth was observed at 18–24 C. The optimum photon irradiance for the algal growth was 60–120 μmol photons m−2s−1. Instead of using ordinary sea salt (NaCl) to prepare artificial seawater, ultra pure salt was adopted. Gracilaria chorda grew faster in artificial seawater made with ultra-pure salt than that made with ordinary sea salt, probably because the former medium was clear, while the latter was milky. Effects of some metal ions on the growth were tested with artificial seawater. Iron ions affected algal growth, but cobalt ions did not. This study enables us to determine suitable culture conditions for G. chorda. A scaled-up 30 l culture of G. chorda under such conditions was successful.  相似文献   

3.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

4.
The Cape Ohma region of Shimokita Peninsula, the northernmost point of Honshu Island, Japan, is subject to both the warm Tsugaru Current and the cold Kurile Current. As a result, the Laminarialean flora includes both cold temperature species (Laminaria japonica Areschoug, Kjellmaniella crassifolia Miyabe and Costaria costata (C. Agardh) Saunders) and warm temperature species (Undaria peterseniana (Kjellman) Okamura, Ecklonia stolonifera Okamura), as well as Undaria pinnatifida (Yendo) Okamura, which is distributed in both waters. The frequency of occurrence (as a measure of distribution) and the biomass of these species were recorded in June 1976 (at 50 points in depths between 8–30 m), July 1988 (192 points, 2.5–25 m) and July 2001 (78 points, 2.5–25 m). Comparison of these data revealed a decrease in cold temperature species and an increase in warm temperature species from 1976 or 1988 to 2001. Long-term data of seawater temperature measured at 5 m depth near the study site showed that mean temperatures in the middle of winter (late January to February) in 1989–2000 were 0.9–1.1 C higher than those in 1980–1988. Higher seawater temperatures in the last decade appear to have affected the frequency of occurrence and biomass of the Laminarialean species along the coasts of Cape Ohma. This result supported our previous conclusion that 1 C higher mean seawater temperature in late January caused a decrease in the biomass of L. japonica (by ca. 64%) along the same coast.  相似文献   

5.
The life cycle and growth ofPotamogeton crispus L. were studied in a shallow pond, Ojaga-ike. With respect to the shoot elongation and seed and turion formations, the life cycle of this plant in the pond could be divided into following five stages: germination, inactive growth, active growth, reproductive and dormant stages. It was suggested that the plant showed these successive stages depending mainly upon water temperature. The turions germinated on the bottom in autumn when the water temperature fell below ca. 20 C. The plant showed hardly any growth during winter (December—early March) when the temperature was below 10 C. In the spring when the bottom water temperature rose to above 10 C (mid-March), the plant started to grow again and the shoot elongated rapidly at the rate of 4.2 cm day−1 until the shoot apex reached the pond surface in late April. Both the increment of node number and the internodal elongation were associated with this rapid shoot growth. On 10 May (last sampling date), the mean values of shoot length, internodal length and the number of nodes estimated for 10 predominant plants were 238.2±5.6 cm, 7.1±0.8 cm and 34.9±4.0 cm, respectively. The turion formation and flowering occurred during the period from mid-April to mid-May when the surface water temperature ranged 19 and 22 C. The dry weight of a plant reached the maximum mean value of 1180 mg on 10 May. At its peak biomass, an individual plant produced 1–10 turions (5.5 on average) of which the mean individual turion dry weight was 53.2 mg. The turion dry weight accounted for ca. 42% of the total plant biomass m−2 at that time.  相似文献   

6.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

7.
Sargassum fulvellum is a brown alga recently introduced to the seaweed cultivation industry in Korea. There is current interest in the commercial scale of aquaculture of this species. For the artificial seeding and cultivation of this alga, growth and maturation were investigated from September 2002 to August 2003. Indoor culture experiments for maturation induction were also conducted at temperatures of 5, 10, 15, 20 and 25 C and irradiances of 20, 50, 80 and 100 μmol photons m−2 s−1 under 16:8 h (L:D) photoperiod. Within a given culture test range, higher temperature and irradiance levels favoured the maturation of receptacles in S. fulvellum. Using temperature and irradiance control for thalli, artificial seed production of this species could be done one month earlier than thalli matured in nature. Under natural condition, receptacle formation of the plants began in February, and the eggs were released from March to April. For mature thalli of 200 g wet wt., artificial seeding was complete enough for attachment on seed strings of 100 m. Mean production obtained from the artificial seeding technique in situ was 3.0 kg wet wt m−1 of culture rope during the cultivation period.  相似文献   

8.
The present study describes a system for efficient plant regeneration via organogenesis and somatic embryogenesis of safflower (Carthamus tinctorius L.) cv. NARI-6 in fungal culture filtrates (FCF)-treated cultures. FCF was prepared by culturing Alternaria carthami fungal mycelia in selection medium for host-specific toxin production. Cotyledon explants cultured on callus induction medium with different levels of FCF (10–50%) produced embryogenic callus. In organogenesis, 42.2% microshoots formed directly from embryogenic callus tissues in plant regeneration medium with 40% FCF. Isolated embryogenic callus cultured on embryo induction medium containing 40% FCF induced 50.2% somatic embryogenesis. Embryo germination percentage was decreased from 64.5 to 28 in embryo maturation medium containing 40% FCF. However, nine plantlets from organogenesis and 24 plantlets from somatic embryogenesis were selected as FCF-tolerant. Alternaria carthami fungal spores (5 × 105 spores/ml) sprayed on the leaves of FCF-tolerant plants showed enhanced survival rate over control plants, which plants were more susceptible to fungal attack. The number of leaf spot lesions per leaf was decreased from 3.4 to 0.9 and their lesion length was also reduced from 2.9 to 0.7 mm in organogenic derived FCF-tolerant plants over control. In somatic embryo derived FCF-tolerant plants, the number of lesions was decreased from 3.1 to 0.4 and the lesion size was also reduced to 2.7–0.5 mm when compared to the control. This study also examined antioxidant enzyme activity in FCF-tolerant plants. Catalase (CAT) activity was slightly decreased whereas peroxidase (POD) activity was increased to a maximum of 42% (0.19 μmol min−1 mg−1 protein) from organogenesis and 47% (0.23 μmol min−1 mg−1 protein) from embryogenesis in FCF-tolerant plants. Superoxide dismutase (SOD) activity was also increased to 17% (149 U mg−1 protein) and 19.5% (145 U mg−1 protein) in FCF-tolerant plants derived from organogenesis and somatic embryogenesis when compared with control plants.  相似文献   

9.
Xu ZZ  Zhou GS 《Planta》2006,224(5):1080-1090
Drought and high-temperature stresses have been extensively studied; however, little is known about their combined impact on plants. In the present study, we determined the photosynthetic gas exchange, chlorophyll fluorescence, nitrogen level, and lipid peroxidation of the leaves of a perennial grass (Leymus chinensis (Trin.) Tzvel.) subjected to three constant temperatures (23, 29 and 32°C), and five soil-moisture levels (75–80%, 60–65%, 50–55%, 35–40% and 25–30% of field capacity, respectively). High temperature significantly decreased plant biomass, leaf green area, leaf water potential, photosynthetic rate (A), maximal efficiency of PSII photochemistry (F v/F m), actual PSII efficiency (ΦPSII), the activities of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2), but markedly increased the ratio of leaf area to leaf weight (SLA), endopeptidase (EP; EC 3.4.24.11) activity, and malondialdehyde (MDA) content, especially under severe water stress conditions. The A and F v/F m were significantly and positively correlated with leaf-soluble protein content, and the activities of NR and GS. However, both photosynthesis parameters were significantly and negatively correlated with EP activity and MDA content (P < 0.05). It is suggested that high temperature, combined with severe soil drought, might reduce the function of PSII, weaken nitrogen anabolism, strengthen protein catabolism, and provoke lipid peroxidation. The results also indicate that severe water stress might exacerbate the adverse effects of high temperature, and their combination might reduce the plant productivity and distribution range of L. chinensis in the future.  相似文献   

10.
Robinia ambigua var. idahoensis, presumably originated from interspecific hybridization of R. pseudoacacia L. and R. hispida L., is a multipurpose tree. Several reports have showed that in vitro micropropagation is a feasible method to produce large quantities of ‘clonal’ plants from R. pseudoacacia, however, no information is available on micropropagation of R. ambigua or the other assumed parental species, R. hispida. Here, we report on a tissue culture system for efficient micropropagation of R. ambigua plants by enhanced branching of axillary buds taken from a single branch of a donor tree. The culture system consists of sequential use of three media, namely, the bud-induction medium (MS medium supplemented with 0.8–1.4 mg l−1 6-BA, 0.05–0.08 mg l−1 NAA and 0.07–0.1 mg l−1 GA), elongation medium (MS medium added with 0.35–0.5 mg l−1 6-BA, 0.05–0.08 mg l−1 NAA and 0.07–0.1 mg l−1 GA) and root-induction medium (1/4 MS medium fortified with 1.7–2.5 mg l−1 IAA and 0.1–0.5 mg l−1 IBA). In addition, we investigated the genetic stability (relative to the donor plant) of a sample of 41 morphologically normal plants randomly taken from ca. 13,000 micropropagated plants, by using the inter-simple sequence repeat (ISSR) marker with 32 selected primers. We found that of the 226 reproducible bands scored, 24 were polymorphic (10.62%), thus pointing to the occurrence, though at a relatively low level compared with an earlier study on R. pseudoacacia, of genomic variation in these micropropagated plants. Further sequencing on seven loci underlying the variations showed that two had significant homology to known or predicted plant genes.  相似文献   

11.
The interaction effects between irradiance and temperature on growth rates ofNannochloropsis oceanicawere determined in both laboratory cultures and large-scale tubular photobioreactors. Growth responses were investigated in 48 batch cultures subjected to crossing light/temperature gradients ranging from 34–80μmol photons m−2s−1and 14.5–35.7C respectively. Comparisons were made to growth responses observed in production systems (200L biofences) operated in climate-regulated greenhouses with controlled temperature and artificial light gradients. Cellular responses showed increasing specific growth rates as a function of temperature, with a peak at 25–29C, after which the growth became increasingly unstable. The optimum temperature for growth increased with higher light intensities up to approximately 28C at 80μmol photons m−2s−1. At low light intensities the specific growth rate was less affected by temperature. The maximum daily production measured in the biofence systems increased proportionally with irradiation and reached approximately 0.7gL−1d−1at 1030μmol photons m−2s−1average daily radiation for a culture temperature of 24C. This corresponds to a daily yield of 140g per day in a 200L biofence system. When specific growth rates for the biofence cultures were measured at different densities and plotted against temperature, results showed a peak with the 24C temperature treatment. This peak became less pronounced as the density increased in the cultures. This is consistent with the laboratory results; increasing cell density in the biofence cultures resulted in less average light cell−1, which produced the same temperature dependent response as seen by reducing the external irradiance exposure for the dilute laboratory cultures.  相似文献   

12.
Recent studies on global climate change report that increase in seawater temperature leads to coastal ecosystem change, including coral bleaching in the tropic. In order to assess the effect of increased seawater temperature on a temperate coastal ecosystem, we studied the inter-annual variation in productivity of Laminaria japonica using long-term oceanographic observations for the Uwa Sea, southern Japan. The annual productivity estimates for L. japonica were 2.7 ± 2.5 (mean ± SD) kg wet wt. m−1 (length of rope) (2003/2004), 1.0 ± 0.6 kg wet wt. m−1 (2004/2005) and 12.1 ± 12.5 kg wet wt. m−1 (2005/2006). Our previous study using the same methodology at the same locality reported that the productivity was estimated for the 2001/2002 (33.3 ± 15.2 kg wet wt. m−1) and 2002/2003 (34.0 ± 8.7 kg wet wt. m−1) seasons. Productivity in 2003/2004 and 2004/2005 was significantly lower than in years 2001/2002, 2002/2003 and 2005/2006. A comparison of oceanographic conditions among the 5 years revealed the presence of threshold seawater temperature effects. When the average seawater temperature during the first 45 days of each experiment exceeded 15.5°C, productivity was reduced to about 10 % of that in cooler years. Moreover the analysis of growth and erosion rates indicates that when the seawater temperature was over 17.5°C, erosion rate exceeded growth rate. Thus, an increase of seawater temperature of just 1°C during winter drastically reduces the productivity of L. japonica in the Uwa Sea.  相似文献   

13.
Several reproductive triats in plants were studied in more than 200 populations of 61 wild species from diverse ecological conditions. As a result, it was found that there occur three distinct types of plants in the energy allocation patterns to reproductive structures (RA) and the propagule output per plant (PN), i.e. (1) the number of propagules per plant increases in response to the increase in RA (Type I), (2) the number of propagules decreases in response to the increase in RA (Type II), and (3) the RA remains constant despite the great differences in the propagule number per plant. A conspicuous trade-off relationship was also discovered to occur between the RA to a single propagule (RA) and the propagule output per plant (PN), such that log RA=logC−blot PN, or RA=C/PN b =CPN b , where C is a constant. The three different ranges ofb-values were recognized, i.e.b<1.0,b>1.0, andb=1.0, which correspond to Type I, Type II, and Type III, respectively. Related problems to the concept ofr- andK-strategy are also discussed.  相似文献   

14.
Plant regeneration through somatic embryogenesis from young leaf explants (5–10 mm long) adjacent to the apex of 5–6 year old offshoots of Tunisian date palm (Phœnix dactylifera L.), cultivar Boufeggous was successfully achieved. Factors affecting embryogenic callus initiation, including plant growth regulators and explant size, were investigated. The highest induction frequencies of embryogenic calli occurred after 6–7 months on MS medium supplemented with 10 mg l−1 2,4-D and 0.3 mg l−1 activated charcoal. The subculture of these calli onto maintenance medium resulted in the formation of proembryos. Fine chopping and partial desiccation (6 and 12 h) of embryogenic calli with proembryos prior to transfer to MS medium supplemented with 1 mg l−1 ABA stimulated the rapid maturation of somatic embryos. Maturated somatic embryo yield per 0.5 g FW of embryogenic callus was 51 embryos with an average maturation time of 55 days. This was increased to 422 with finely chopped callus, and 124 and 306 embryos following 6 and 12 h desiccation treatments, respectively. The average time to maturation for these 3 treatments was 35, 43 and 38 days, respectively. Subsequent substitution of ABA in MS medium with 1 mg l−1 NAA resulted in the germination and conversion of 81% of the somatic embryos into plantlets with normal roots and shoots. The growth of regenerated somatic plants was also monitored in the field.  相似文献   

15.
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 μmol photons m−2 s−1, and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (Fv/Fm) of seedlings after 1 h treatment at 40°C was 98%, and the 48 h recovery of Fv/Fm of seedlings after 1 h exposure to 1800 μmol m−2 s−1 was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L−1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.  相似文献   

16.
To ascertain the feeding habits of benthic juvenile yellowfin goby Acanthogobius flavimanus, the gut contents of 599 specimens (15–41 mm in standard length, SL), collected on a tidal mudflat in the Tama River estuary throughout the diel cycle, were examined. The major prey items changed from harpacticoid copepods to errant and sedentary polychaetes at ca. 20 mm SL. Prey width increased with fish size. Fish of 26–28 mm SL fed mainly from sunset to morning, with highest feeding intensity during twilight hours and/or high tide. Based on the gut evacuation rate estimated from a forced feeding experiment in the laboratory and data for the diel change of mean gut-content volume in the field, the daily ration of juvenile yellowfin goby (26–28 mm SL) was calculated to be 13.8 mm3 fish−1 day−1. This volume is approximately equivalent to 3.9 individuals of the errant polychaete Ceratonereis erythraeensis (9.7 mm in body length, BL) or 8.1 individuals of the sedentary polychaete Prionospio japonica (14.8 mm BL), both species occurring abundantly on the mudflat during the study.  相似文献   

17.
Factors affecting microspore embryogenesis of cow cockle (Saponaria vaccaria) were evaluated including donor plant growing conditions, genotype, bud size, density, medium composition, and culture conditions. Of the two donor plant (day/night) temperature regimes evaluated (10/5°C and 20/15°C), plants grown at 20/15°C were the most embryogenic. An embryogenic frequency of greater than 350 embryos/100 buds was observed in the most embryogenic genotype, cv. ‘White Beauty’. Buds from 3–9 mm in length were evaluated for their embryogenic potential; buds that were 4–7.9 mm produced the most embryos/100 buds. Of all the media compositions evaluated, NLN medium with 15% sucrose resulted in the most embryos. Cow cockle microspores required an initial period of 32°C for 3 days for production of microspore-derived embryos (MDEs).  相似文献   

18.
The effect of early (embryonic and larval) thermal history on subsequent (juvenile) white muscle hyperplasia was studied in a teleost fish, the European sea bass (Dicentrarchus labrax L.). D. labrax, incubated and reared at constant temperatures of 13°C, 15°C or 20°C from the embryonic stage of half epiboly up to 18–19 mm in total length, were transferred to ambient seawater temperature and reared for the subsequent 14 months on commercial feed. The somatic growth of juveniles was linked to annual variations of ambient seawater temperature and inversely related to early rearing temperature, so that, after 14 months, the juveniles originally reared at low temperatures had compensated for the growth retardation experienced during early life. The white muscle growth process of juveniles was quantified after two periods of growth opportunity at ambient seawater temperature (100 and 400 days post-transfer) as well as, in order to follow total-length-dependent effects of early temperature and to discriminate total-length-independent effects of early temperature, on juveniles from the three batches sampled at six successive equivalent total lengths (31–33, 84–88, 141–145, 166–172, 196–206 and 211–220 mm). Our data demonstrate the existence of a seasonal recruitment of new white muscle fibres when seawater temperature increases and of a shrinkage of the largest white muscle fibres during the winter months. The seasonal recruitment of new white muscle fibres occurring in juveniles is linked to their early rearing temperature. Juveniles originating from low temperatures have a higher and longer capacity to recruit new white muscle fibres when seawater temperature increases, supporting their better somatic growth. This finding is discussed in relation to the early (embryonic and larval) myogenic processes of the three populations and is related to their sex ratio. This work was financed by the European Commission, FAIR Program no. PL96–1941 “Muscle Ontogeny in Sea bass and Trout”.  相似文献   

19.
In order to determine the seasonal growth and biomass ofTrapa japonica Flerov, field observations were carried out at Ojaga-ike Pond, Chiba, Japan, during 1979 and 1980. In spring, the plant showed exponential growth (c. 0.080 g g−1 day−1) and shoot elongation was as rapid as 10 cm day−1. The plant attained its maximum biomass (380.5±35.1 g m−2) in late August, and about 50% of this was concentrated in the topmost 30-cm stratum (645.7±33.1 g m−3); maximum total stem length exceeded 6m. The plant produced large (500–800 mg per fruit), but small numbers of nut-like fruit (maximum, 5 fruits per rosette). Defoliation occurred almost linearly with time at a rate of 30.6 leaves m−2 day−1; annual net leaf production was estimated to be about twice as large as the seasonal maximum leaf biomass. While the number of leaves per rosette showed moderate seasonal change, rosette density, rosette area and leaf dry weight changed considerably during the year. From the negative log-log correlation between mean total leaf dry weight per rosette and rosette density, density-dependent rosette growth was assumed. The cause of the wide spread of this species in aquatic habitats is briefly discussed in terms of its seed size and morphology.  相似文献   

20.
Seven gloves were studied worn by eight sedentary subjects (six men and two women) exposed to cold–dry, C–D, (mean dry bulb temperature −17.2C; mean dew point temperature ), and cold–wet, C–W, ( 0C; ) conditions. Mean endurance times were 75 min for the C–D and 162 min for the C–W conditions. A three-phase response pattern of the temperature in the fingers was characterized. Phase I comprised an initial period during which finger temperature remained close to the pre-exposed level, due to delayed vasoconstriction in the finger. Phase II involved an exponential-like decrease of finger temperature indicative of the onset of vasoconstriction in the finger. Phase III manifested periodic finger temperature changes due to cold induced vasodilatation (CIVD). Mean wave patterns for phase III indicated approximately 3.5 waves · h−1 in the C–D but only about 2 waves · h−1 in the C–W condition. Extension of endurance time, due to CIVD, was defined as the difference in time between the actual end of the experiment and the time the finger-tip would have reached the set temperature endurance limit as extrapolated by a continued exponential drop. Three overall response patterns of fingers in the cold were characterized: type A exhibiting all 3 phases; type B1 or B2 exhibiting either phases I+II or phases II+III; and type C showing only phase II. Considerable inter- and intra-subject variability was found. In both test conditions the final physiological thermal states of the subjects were between comfortable and slightly uncomfortable but acceptable and thus did not correlate with the responses in the fingers. Accepted: 5 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号