首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The administration of glucose to 48 h-starved euthyroid or hyperthyroid rats led to decreased blood concentrations of fatty acids and ketone bodies in both groups, but fatty acid concentrations were higher and ketone-body concentrations lower in the latter group. Decreased ketonaemia was not due to increased ketone-body clearance. Flux through carnitine palmitoyltransferase 1 was increased, consistent with the effects of hyperthyroidism on enzyme activity demonstrated in vitro. Correlations between the concentrations of ketone bodies and long-chain acylcarnitine measured in freeze-clamped liver samples indicated that a lower proportion of the product of beta-oxidation was used for ketone-body synthesis. Citrate concentrations were unaffected by hyperthyroidism, but lipogenesis was increased. The results are discussed in relation to the factors controlling hepatic carbon flux and energy requirements after re-feeding.  相似文献   

2.
The effects of administration of synthetic thyrotropin-releasing hormone (TRH) on circulating growth hormone (GH), PROLACTIN (PRL) and triiodothyronine (T3) levels of lactating dairy cows, non-lactating dairy heifers, and beef cows were studied. Intravenous administration of 0.1, 1, and 5 microgram of TRH per kg of body weight (bw) elevated plasma GH and PRL levels of lactating cows within 5 min. The plasma GH and PRL levels increased in proportion to the dose of TRH and reached a peak 10 to 30 min after TRH injection. Intravenous administration of 1 microgram of TRH per kg of bw to 7 non-lactating heifers, 14 lactating dairy cows, and 5 non-lactating beef cows elevated plasma GH level to peak values after 15 min, the increase rates being 6.9, 5.6, and 3.8 times as high as those in the pretreatment levels. The mean maximum vale was also in that order. Plasma T3 levels of non lactating dairy heifers at pre- and post-injection of TRH were significantly higher than those of lactating cows. The peak values of plasma PRL were obtained between 5 to 30 min after TRH administration. The increase rates of lactating dairy cows, heifers, and beef cows were 19.2, 13.9, and 20.9 times as high as those in the pretreatment. In contrast to GH and T3, plasma PRL levels of both pre- and post-injection with TRH in lactating cows and heifers were significantly higher in May than in October, though the increase rates were similar. Plasma PRL levels of lactating dairy cows at pre- and post-injection with TRH were significantly higher than those of non-lactating heifers. Subcutaneous administration of TRH was also effective to increase plasma TH, rl, and T3 levels in lactating cows. No significant change of GH or PRL response to TRH was observed after a short-term pretreatment of thyroid hormones.  相似文献   

3.
Experiments were performed in which the effects of inhibiting gluconeogenesis on ketone-body formation were examined in vivo in starved and severely streptozotocin-diabetic rats. The infusion of 3-mercaptopicolinate, an inhibitor of gluconeogenesis (DiTullio et al., 1974), caused decreases in blood [glucose] and increases in blood [lactate] and [pyruvate] in both normal and ketoacidotic rats. Patterns of liver gluconeogenic intermediates after 3-mercaptopicolinate infusion suggested inhibition at the level of phosphoenolpyruvate carboxykinase. This was confirmed by measurement of hepatic oxaloacetate concentrations which were increased 5-fold after 3-mercaptopicolinate administration. The infusion of 3-mercaptopicolinate caused a decrease in total ketone-body concentrations of 30% in starved rats and 73% in the diabetic animals. Blood glycerol and hepatic triglyceride concentrations remained unchanged. The decreases in ketone-body concentrations were associated with increases in the calculated hepatic cytosolic and mitochondrial [NADH]/[NAD+] ratios. The decrease in ketogenesis seen after inhibition of gluconeogenesis may have resulted from an inhibition of hepatic fatty acid oxidation by the more reduced mitochondrial redox state. It was concluded that gluconeogenesis may stimulate ketogenesis by as much as 30% in severe diabetic ketoacidosis.  相似文献   

4.
Rats were subjected to laparotomy, or laparotomy and partial hepatectomy, at 0-48 h before administration of water or medium-chain-length triacylglycerol, having been starved post-operatively. Functional hepatectomies were performed at intervals after the intragastric load. Blood ketone-body concentrations after medium-chain triacylglycerol administration and/or functional hepatectomy of these rats were compared with values obtained in starved control rats. Decreased ketonaemia in response to medium-chain triacylglycerol was observed for up to 48 h after partial hepatectomy and at 1 and 2 h after laparotomy, but not at 24 or 48 h after laparotomy. Rates of ketone-body clearance after functional hepatectomy were unaffected by prior laparotomy or partial hepatectomy. Ketonaemia after medium-chain-triacylglycerol administration was only partially blocked by inhibition of CPT I (carnitine palmitoyltransferase I). The results demonstrate sustained effects of partial hepatectomy and short-term effects of surgical stress to decrease ketonaemia via inhibition of ketogenesis at site(s) distal to CPT I.  相似文献   

5.
M S Ardawi  M F Majzoub 《Biochimie》1988,70(6):749-755
1. The effect of starvation on the metabolism of gut glutamine and ketone-bodies of peak lactating, non-lactating and virgin rats was investigated. 2. The arterial blood ketone-body concentration was increased by approximately 7-, 6- and 13-fold in 48 h-starved virgin, non-lactating and lactating rats, respectively. 3. The arterial blood glutamine concentration was decreased by approximately 32% in 48 h-starved lactating rats (p less than 0.001). 4. The maximal activity of phosphate-dependent glutaminase was increased or decreased in the small intestine of fed or 48 h-starved peak-lactating rats, respectively. 5. Portal drained viscera blood flow increased by approximately 25% in peak-lactating rats. 6. Arteriovenous difference measurements for ketone-bodies across the gut of 48 h-starved rats showed an increase in net uptake of ketone-bodies by approximately 10-, 17- and 29-fold in virgin, non-lactating and lactating rats, respectively. 7. Glutamine was extracted by the gut of peak-lactating rats at a rate of 487 nmol/100 g of body wt. which was greater by approximately 33% (p less than 0.001) than that of virgin or non-lactating animals. In peak lactating rats, 48 h-starvation resulted in marked decreases in the rates of glutamine removal from the circulation (p less than 0.001) which was accompanied by decreased rates of release of glutamate, alanine and ammonia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The hepatic concentrations of the ketone bodies and of metabolites and activities of enzymes involved in gluconeogenesis were measured in healthy lactating and non-lactating cows 48h after administration of Voren, an ester of dexamethasone, and compared with those found in control animals given saline. Parallel measurements were also made of the blood concentrations of several of the metabolites. 2. Blood glucose concentrations were raised in the Voren-treated animals, whereas blood ketone body and free fatty acid concentrations were unaltered. Similarly there was no change in the hepatic concentrations of the ketone bodies. 3. Significant increases were found in the hepatic concentrations of citrate, 2-oxo-glutarate and malate in both groups of animals given Voren. 4. The hepatic concentrations of those glycolytic intermediates that were measured either decreased or did not change after Voren treatment. 5. The enzymes aspartate transaminase and fructose 1,6-diphosphatase were unchanged in activity after Voren administration, whereas phosphopyruvate carboxylase (EC 4.1.1.32) activity was depressed in the lactating group. However, glucose 6-phosphatase, tryptophan oxygenase and tyrosine aminotransferase increased in activity. 6. In several cases those hepatic metabolites that increased in concentration after Voren administration were present in lower concentration in normal lactating cows than in normal non-lactating cows. The same applied mutatis mutandis to those metabolites that were decreased by Voren. 7. These findings are discussed in relation to the use of glucocorticoids in the treatment of bovine ketosis.  相似文献   

7.
The metabolic state of pregnant mammals influences the offspring’s development and risk of metabolic disease in postnatal life. The metabolic state in a lactating dairy cow differs immensely from that in a non-lactating heifer around the time of conception, but consequences for their calves are poorly understood. The hypothesis of this study was that differences in metabolic state between non-lactating heifers and lactating cows during early pregnancy would affect insulin-dependent glucose metabolism and development in their neonatal calves. Using a mixed linear model, concentrations of glucose, IGF-I and non-esterified fatty acids (NEFAs) were compared between 13 non-lactating heifers and 16 high-yielding dairy cows in repeated blood samples obtained during the 1st month after successful insemination. Calves born from these dams were weighed and measured at birth, and subjected to intravenous glucose and insulin challenges between 7 and 14 days of age. Eight estimators of insulin-dependent glucose metabolism were determined: glucose and insulin peak concentration, area under the curve and elimination rate after glucose challenge, glucose reduction rate after insulin challenge, and quantitative insulin sensitivity check index. Effects of dam parity and calf sex on the metabolic and developmental traits were analysed in a two-way ANOVA. Compared with heifers, cows displayed lower glucose and IGF-I and higher NEFA concentrations during the 1st month after conception. However, these differences did not affect developmental traits and glucose homeostasis in their calves: birth weight, withers height, heart girth, and responses to glucose and insulin challenges in the calves were unaffected by their dam’s parity. In conclusion, differences in the metabolic state of heifers and cows during early gestation under field conditions could not be related to their offspring’s development and glucose homeostasis.  相似文献   

8.
Biochemical aspects of bovine ketosis   总被引:11,自引:10,他引:1       下载免费PDF全文
1. The concentrations of acetoacetate, β-hydroxybutyrate and metabolites related to gluconeogenesis were determined in biopsy samples of the livers of ketotic, normal lactating and normal non-lactating cows. Key enzymes of gluconeogenesis in the liver were also assayed. 2. Significant decreases were found in the ketotic liver in the concentrations of glucogenic amino acids (glutamate, glutamine, alanine) and of glucogenic oxo acids (α-oxoglutarate, pyruvate, oxaloacetate). 3. The β-hydroxybutyrate/acetoacetate concentration ratios were generally much higher than in rat liver. 4. The concentration of total fat was sevenfold higher in the ketotic liver, and that of glucose plus glycogen fourfold lower than in normal liver. 5. The blood of ketotic cows showed a marked rise in the concentration of free fatty acids. 6. The activities of pyruvate carboxylase, propionyl-CoA carboxylase, phosphopyruvate carboxylase and fructose 1,6-diphosphatase showed no clear-cut differences between normal and ketotic animals. 7. Glucose injection promptly relieved the ketotic condition with respect to both the clinical and biochemical signs. The fall in the concentrations of the ketone bodies in the blood was preceded by a fall in the concentrations of free fatty acids and glycerol. 8. The findings are taken to be consistent with the concept that an increased rate of gluconeogenesis, causing a decrease in the concentration of oxaloacetate, is a major causal factor in ketogenesis.  相似文献   

9.
Three lactating and three non-lactating black Bedouin goats were subjected to four days of water deprivation or to hemorrhage. Four days of water deprivation caused body wt losses of 32 and 23% and plasma volume losses of 30 and 34% in lactating and non-lactating goats respectively. Plasma osmolality increased 17 and 15% in lactating and non-lactating goats. Plasma arginine vasopressin concentration rose from about 5 pg/ml to a mean of 36 pg/ml. Plasma renin activity increased from about 0.7 ng/ml/hr to a mean of 3.45 ng/ml/hr in lactating and to 3.15 ng/ml/hr in non-lactating goats. At 4.5 hr post-rehydration plasma osmolality and plasma vasopressin concentration were back to normal in non-lactating, but still elevated in lactating goats. Plasma renin activity increased after rehydration. Rapid blood volume loss of 21-28% increased plasma vasopressin concentration to 16-35 pg/ml in non-lactating and to 70 or greater than 500 pg/ml in lactating goats. It is concluded that black Bedouin goats are well adapted to endure severe dehydration and rapid rehydration, but that they (especially lactating animals) react strongly to rapid volume depletion.  相似文献   

10.
Ghrelin affects not only growth hormone secretion but also nutrient utilization and metabolic hormone secretion in humans and experimental animals. The effects of ghrelin on plasma metabolic hormone and metabolite levels in domestic herbivores remain unclear despite the fact that the physiological characteristics of nutrient digestion and absorption imply specific responses to ghrelin. Therefore, the effects of ghrelin on plasma glucose, pancreatic hormones and cortisol concentrations were investigated in Holstein dairy cattle in various physiological states. Ghrelin (0.3 nmol/kg) or placebo (2% bovine serum albumin in saline) was intravenously injected in pre-ruminant calves (pre-rumen function), adult non-lactating (functional rumen) and lactating cows (functional rumen and lactation), and plasma glucose, insulin, glucagon and cortisol concentrations were then determined. Ghrelin injection increased plasma glucose concentrations in adult cows, especially in lactating cows. No hyperglycemic response was observed in pre-ruminant calves. A transient rise of insulin and glucagon levels was distinctively found in lactating cows in response to the ghrelin administration. Ghrelin injection decreased the insulin level in pre-ruminant calves. Ghrelin increased cortisol secretion independently of the physiological state. The results of the present study suggest that the effects of ghrelin on plasma glucose and pancreatic hormone levels may reflect differences in the physiological states of dairy cattle.  相似文献   

11.
High plasma urea nitrogen (PUN) concentrations are associated with decreased fertility in lactating dairy cows. Our objective was to evaluate the quality of embryos flushed from superovulated lactating cows having moderate or high PUN concentrations. Subsequent embryo survival was determined after transfer to recipient heifers with either low or high PUN. Lactating Holstein dairy cows (n = 23; 50-120 days in milk) were randomly assigned to one of two diets designed to result in moderate or high PUN concentrations (15.5 +/- 0.7 and 24.4 +/- 1.0 mg/dl, respectively; P < 0.001) and were fed for 30 days before embryo flushing and recovery. Embryos (n = 94) were evaluated morphologically, frozen and subsequently transferred into synchronized virgin heifers that were fed one of two diets designed to result in either low or high PUN concentrations (7.7 +/- 0.9 and 25.2 +/- 1.5 mg/dl, respectively; P < 0.001; 2 x 2 factorial design). The number, quality and stage of development of recovered embryos were similar for cows with moderate or high PUN. Transfer of embryos from moderate PUN donor cows resulted in a higher pregnancy rate (35%; P < 0.02) than the transfer of embryos from high PUN donor cows (11%). Pregnancy rate was not affected by either recipient diet or the interaction of donor and recipient diets (P > 0.05). These results indicate that high PUN concentrations in lactating dairy cows decrease embryo viability through effects exerted on the oocyte or embryo before recovery from the uterus 7 days after insemination.  相似文献   

12.
The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of β-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.  相似文献   

13.
The aim of the present study was to determine the extent to which the fish liver is perfused with blood. Transonic? flow probes were therefore implanted around the ventral aorta and hepatic vein(s) to record baseline blood flows in rainbow trout (Oncorhynchus mykiss) previously held under two different feeding regimes (food-deprived or fed to satiation, 8-12 weeks). Fish from both groups were exposed to a gradual temperature decrease (12°C to 5°C) and physical disturbance. Cardiac output (Q), stroke volume (Sv) and hepatic venous blood flow (HVBF) were significantly reduced in food-deprived trout at 12°C. Heart rate was not significantly affected by nutritional status, but was significantly reduced when temperature was decreased to 5°C. Physically disturbing each fish at 12°C and 5°C showed that the performance capacity of the heart was not affected by food deprivation as the capacity to increase Q and Sv was not reduced in the food-deprived group. Overall this study showed that food deprivation in rainbow trout reduced cardiac and hepatic blood flows. However, long-term food deprivation did not affect the capacity of the heart to acutely increase performance.  相似文献   

14.
The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO.  相似文献   

15.
The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like it is shown in humans, but was able to impact hyperlipemia, as NEFA and TG decreased.  相似文献   

16.
1. The purpose of this study was to determine the nature of the metabolic changes associated with carbohydrate and fat metabolism that occurred in the blood and liver of lactating dairy cows during starvation for 6 days. 2. During starvation, the blood concentrations of the free fatty acids and ketone bodies increased, whereas that of citrate decreased. After an initial increase, the blood concentration of glucose subsequently declined as starvation progressed. Starvation caused a significant decrease in the plasma concentration of serine and a significant increase in that of leucine. 3. After 6 days of starvation the hepatic concentrations of oxaloacetate, citrate, phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose, glycogen, ATP and NAD+ had all decreased, as had the hepatic activities of phosphopyruvate carboxylase (EC 4.1.1.32) and pyruvate kinase (EC 2.7.1.40). 4. The above metabolic changes are similar to those previously found to occur in cows suffering from spontaneous ketosis (Baird et al., 1968; Baird & Heitzman, 1971). 5. Milk yield decreased progressively during starvation. 6. There were marked differences in the ability of individual animals to resist the onset of severe starvation ketosis.  相似文献   

17.
The current study aimed to investigate if different sources of supplemental zinc (Zn), manganese (Mn), copper (Cu), and selenium (Se) fed to dry and lactating dairy cows affect reproductive performance, lameness status, and colostrum production. The experiment was carried out on 60 multiparous non-lactating Holstein cows in a commercial dairy herd. The cows received randomly mineral mixtures in three treatment groups containing inorganic, 25% organic–75% inorganic, or 50% organic–50% inorganic forms of Zn, Mn, Cu, and Se starting from approximately 3 weeks prior to calving up to 90 days postpartum. Supplements were included in rations and fed twice a day. Reproductive parameters including days to first service, days to first estrus, service per conception, and conception rate were investigated. After parturition, colostrum production, composition, and immunoglobulin G1 concentration were determined. Lameness, as an indicator of trace minerals deficiency, was evaluated in a five-score scale. The source of mineral supplement only numerically improved the assessed parameters excluding colostrum fat, protein, and ash percent. The organic form of supplements did not significantly affect reproductive performance, lameness score, or colostrum production.  相似文献   

18.
Six non-pregnant cows were allocated into 3 groups. Group 1 comprised a pair of lactating cows, whereas groups 2 and 3 each comprised a pair of non-lactating cows. The cows in groups 1 and 2 were dosed intraruminally by stomach tube with zinc oxide at 120 mg Zn per kg of bodyweight at weekly intervals for a period of 33 days. Each cow received a total of 4 doses of zinc oxide. Group 3 served as non-treated control group. Blood samples were collected from all 6 cows daily. Serum was analysed for concentration of calcium. Within 12–24 h of each zinc oxide administration the serum calcium of the lactating cows dropped dramatically indicating the existence of an antagonistic effect between Zn and Ca. The first Zn induced hypocalcaemic episode in the lactating cows was followed by a rise in serum calcium to a level above the pre-dosing level and above the mean value of the control group. The depth of the hypocalcaemic response decreased with the number of zinc oxide dosings. This effect was explained as a response from the stimulation of the calcium homeostatic mechanisms. In the Zn dosed non-lactating cows responses were similar but less clear. The perspective of these findings is discussed in relation to resistance towards parturient hypocalcaemia.  相似文献   

19.
The relative importance of the main glucogenic and ketogenic substrates, and interactions between fatty acids availability and ketogenesis have been investigated in virgin or 21 day pregnant rats. Fed pregnant rats displayed elevated lactatemia and the production of lactate by portal-drained viscera was markedly reduced. In contrast, the production of alanine and propionate from digestion was almost similar in fed pregnant and virgin rats. The release of glucose by the liver in fed animals was higher in pregnant rats, and lactate was the main glucogenic substrate taken up whereas alanine uptake was reduced. The hepatic utilization of propionate was not different between the two groups of fed animals. Hepatic gluconeogenesis and lactate extraction were enhanced by starvation; the contribution of lactate to glucose release remained higher in pregnant than in virgin rats, whereas the contribution of alanine was lower, owing to its decreased availability in afferent blood. There was a large uptake of intestinally-derived acetate in fed rates, and a slight release, parallel to ketogenesis, was observed in starved pregnant rats. Free fatty acids were elevated and efficiently taken up by the liver in fed pregnant rats, but without any noticeable ketogenesis. Hepatic ketogenesis was enhanced in starved animals, with marked hyperketonaemia in pregnant rats. However, in those animals, the hepatic release of ketone bodies was not proportional to ketonaemia and was almost similar to the release in starved virgin rats.  相似文献   

20.
The importance of ketone bodies (acetoacetate and 3-hydroxybutyrate) as substrates for peripheral tissues, especially nervous tissue, of man is now firmly established. This has renewed interest in the factors that control the production of ketone bodies by the liver in various physiological situations, such as alterations of dietary status, stage of development or alteration in demand for circulating substrates (e.g. in exercise or lactation). In the discussion of the regulation of ketogenesis in the present paper, distinction is made between extrahepatic and intrahepatic control. The former is mainly concerned with the factors (e.g. hormonal status of animals) that alter the flux of non-esterified fatty acids to the liver, whereas intrahepatic regulation involves the fate (esterification versus beta-oxidation) of fatty acids within the liver. Emphasis is placed on the fact that alterations in blood glucose concentrations are indirectly responsible, via effects on insulin secretion, for the extrahepatic control of ketogenesis. By analogy, it is postulated that the carbohydrate status of the liver may play a role in the intrahepatic regulation of ketogenesis. Some support for this postulate is provided by comparison of measurements of blood ketone-body concentrations in various inborn errors of hepatic carbohydrate metabolism (e.g. deficiencies of glucose 6-phosphatase, fructose 1,6-bisphosphatase and glycogen synthase) in man and by experiments with isolated rat hepatocytes. Present information on the short- and long-term factors that may be responsible for the altered rates of ketogenesis during the foetal-neonatal and suckling-weanling transitions, in lactation, on feeding a high-fat diet and post-exercise is discussed. It is concluded that the major factors involved in the regulation of ketogenesis in these situations are (a) flux of non-esterified fatty acids to the liver and (b) the partitioning of long-chain acyl-CoA between the esterification and beta-oxidation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号