首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pattern formation along the anterior-posterior (A/P) axis of the developing Drosophila wing depends on Decapentaplegic (Dpp), a member of the conserved transforming growth factor beta (TGFbeta) family of secreted proteins. Dpp is expressed in a stripe along the A/P compartment boundary of the wing imaginal disc and forms a long-range concentration gradient with morphogen-like properties which generates distinct cell fates along the A/P axis. We have monitored Dpp expression and Dpp signalling in endocytosis-mutant wing imaginal discs which develop severe pattern defects specifically along the A/P wing axis. The results show that the size of the Dpp expression domain is expanded in endocytosis-mutant wing discs. However, this expansion did not result in a concomitant expansion of the functional range of Dpp activity but rather its reduction as indicated by the reduced expression domain of the Dpp target gene spalt. The data suggest that clathrin-mediated endocytosis, a cellular process necessary for membrane recycling and vesicular trafficking, participates in Dpp action during wing development. Genetic interaction studies suggest a link between the Dpp receptors and clathrin. Impaired endocytosis does not interfere with the reception of the Dpp signal or the intracellular processing of the mediation of the signal in the responder cells, but rather affects the secretion and/or the distribution of Dpp in the developing wing cells.  相似文献   

2.
3.
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.  相似文献   

4.
The Drosophila wing primordium is defined by expression of the selector gene vestigial (vg) in a discrete subpopulation of cells within the wing imaginal disc. Following the early segregation of the disc into dorsal (D) and ventral (V) compartments, vg expression is governed by signals generated along the boundary between the two compartments. Short-range DSL (Delta/Serrate/LAG-2)-Notch signaling between D and V cells drives vg expression in ;border' cells that flank the boundary. It also induces these same cells to secrete the long-range morphogen Wingless (Wg), which drives vg expression in surrounding cells up to 25-30 cell diameters away. Here, we show that Wg signaling is not sufficient to activate vg expression away from the D-V boundary. Instead, Wg must act in combination with a short-range signal produced by cells that already express vg. We present evidence that this vg-dependent, vg-inducing signal feeds forward from one cell to the next to entrain surrounding cells to join the growing wing primordium in response to Wg. We propose that Wg promotes the expansion of the wing primordium following the D-V segregation by fueling this non-autonomous autoregulatory mechanism.  相似文献   

5.
Following segregation of the Drosophila wing imaginal disc into dorsal (D) and ventral (V) compartments, the wing primordium is specified by activity of the selector gene vestigial (vg). In the accompanying paper, we present evidence that vg expression is itself driven by three distinct inputs: (1) short-range DSL (Delta/Serrate/LAG-2)-Notch signaling across the D-V compartment boundary; (2) long-range Wg signaling from cells abutting the D-V compartment boundary; and (3) a short-range signal sent by vg-expressing cells that entrains neighboring cells to upregulate vg in response to Wg. Furthermore, we showed that these inputs define a feed-forward mechanism of vg autoregulation that initiates in D-V border cells and propagates from cell to cell by reiterative cycles of vg upregulation. Here, we provide evidence that this feed-forward mechanism is required for normal wing growth and is mediated by two distinct enhancers in the vg gene. The first is a newly defined ;priming' enhancer (PE), that provides cryptic, low levels of Vg in most or all cells of the wing disc. The second is the previously defined quadrant enhancer (QE), which we show is activated by the combined action of Wg and the short-range vg-dependent entraining signal, but only if the responding cells are already primed by low-level Vg activity. Thus, entrainment and priming constitute distinct signaling and responding events in the Wg-dependent feed-forward circuit of vg autoregulation mediated by the QE. We posit that Wg controls the expansion of the wing primordium following D-V segregation by fueling this autoregulatory mechanism.  相似文献   

6.
Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group (Heliconius cydno and Heliconius sapho) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species (Heliconius melpomene and Heliconius erato, respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context-strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.  相似文献   

7.
Morphogenesis of the Drosophila wing depends on a series of cell-cell and cell-extracellular matrix interactions. During pupal wing development, two secreted proteins, encoded by the short gastrulation (sog) and decapentaplegic (dpp) genes, vie to position wing veins in the center of broad provein territories. Expression of the Bmp4 homolog dpp in vein cells is counteracted by expression of the Bmp antagonist sog in intervein cells, which results in the formation of straight veins of precise width. We screened for genetic interactions between sog and genes encoding a variety of extracellular components and uncovered interactions between sog and myospheroid (mys), multiple edematous wing (mew) and scab (scb), which encode betaPS, alphaPS1 and alphaPS3 integrin subunits, respectively. Clonal analysis reveals that integrin mutations affect the trajectory of veins inside the provein domain and/or their width and that misexpression of sog can alter the behavior of cells in such clones. In addition, we show that a low molecular weight form of Sog protein binds to alphaPS1betaPS. We find that Sog can diffuse from its intervein site of production into adjacent provein domains, but only on the dorsal surface of the wing, where Sog interacts functionally with integrins. Finally, we show that Sog diffusion into provein regions and the reticular pattern of extracellular Sog distribution in wild-type wings requires mys and mew function. We propose that integrins act by binding and possibly regulating the activity/availability of different forms of Sog during pupal development through an adhesion independent mechanism.  相似文献   

8.
9.
The frizzled (fz) gene is required for the development of distally pointing hairs on the Drosophila wing. It has been suggested that fz is needed for the propagation of a signal along the proximal distal axis of the wing. The directional domineering non-autonomy of fz clones could be a consequence of a failure in the propagation of this signal. We have tested this hypothesis in two ways. In one set of experiments we used the domineering non-autonomy of fz and Vang Gogh (Vang) clones to assess the direction of planar polarity signaling in the wing. prickle (pk) mutations alter wing hair polarity in a cell autonomous way, so pk cannot be altering a global polarity signal. However, we found that pk mutations altered the direction of the domineering non-autonomy of fz and Vang clones, arguing that this domineering non-autonomy is not due to an alteration in a global signal. In a second series of experiments we ablated cells in the pupal wing. We found that a lack of cells that could be propagating a long-range signal did not alter hair polarity. We suggest that fz and Vang clones result in altered levels of a locally acting signal and the domineering non-autonomy results from wild-type cells responding to this abnormal signal.  相似文献   

10.
11.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

12.
Natzle JE  Kiger JA  Green MM 《Genetics》2008,180(2):885-893
Following eclosion from the pupal case, wings of the immature adult fly unfold and expand to present a flat wing blade. During expansion the epithelia, which earlier produced the wing cuticle, delaminate from the cuticle, and the epithelial cells undergo an epithelial–mesenchymal transition (EMT). The resulting fibroblast-like cells then initiate a programmed cell death, produce an extracellular matrix that bonds dorsal and ventral wing cuticles, and exit the wing. Mutants that block wing expansion cause persistence of intact epithelia within the unexpanded wing. However, the normal progression of chromatin condensation and fragmentation accompanying programmed cell death in these cells proceeds with an approximately normal time course. These observations establish that the Bursicon/Rickets signaling pathway is necessary for both wing expansion and initiation of the EMT that leads to removal of the epithelial cells from the wing. They demonstrate that a different signal can be used to activate programmed cell death and show that two distinct genetic programs are in progress in these cells during wing maturation.  相似文献   

13.
The bird wing is of special interest to students of homology and avian evolution. Fossil and developmental data give conflicting indications of digit homology if a pentadactyl "archetype" is assumed. Morphological signs of a vestigial digit I are seen in bird embryos, but no digit-like structure develops in wild-type embryos. To examine the developmental mechanisms of digit loss, we studied the expression of the high-mobility group box containing Sox9 gene, and bone morphogenetic protein receptor 1b (bmpR-1b)-markers for precondensation and prechondrogenic cells, respectively. We find an elongated domain of Sox9 expression, but no bmpR-1b expression, anterior to digit II. We interpret this as a digit I domain that reaches precondensation, but not condensation or precartilage stages. It develops late, when the tissue in which it is lodged is being remodeled. We consider these findings in the light of previous Hoxd-11 misexpression studies. Together, they suggest that there is a digit I vestige in the wing that can be rescued and undergo development if posterior patterning cues are enhanced. We observed Sox9 expression in the elusive "element X" that is sometimes stated to represent a sixth digit. Indeed, incongruity between digit domains and identities in theropods disappears if birds and other archosaurs are considered primitively polydactyl. Our study provides the first gene expression evidence for at least five digital domains in the chick wing. The failure of the first to develop may be plausibly linked to attenuation of posterior signals.  相似文献   

14.
15.
JAK/STAT signaling is localized to the wing hinge, but its function there is not known. Here we show that the Drosophila STAT Stat92E is downstream of Homothorax and is required for hinge development by cell-autonomously regulating hinge-specific factors. Within the hinge, Stat92E activity becomes restricted to gap domain cells that lack Nubbin and Teashirt. While gap domain cells lacking Stat92E have significantly reduced proliferation, increased JAK/STAT signaling there does not expand this domain. Thus, this pathway is necessary but not sufficient for gap domain growth. We show that reduced Wingless (Wg) signaling dominantly inhibits Stat92E activity in the hinge. However, ectopic JAK/STAT signaling does not perturb Wg expression in the hinge. We report negative interactions between Stat92E and the notum factor Araucan, resulting in restriction of JAK/STAT signaling from the notum. In addition, we find that the distal factor Nub represses the ligand unpaired as well as Stat92E activity. These data suggest that distal expansion of JAK/STAT signaling is deleterious to wing blade development. Indeed, mis-expression of Unpaired within the presumptive wing blade causes small, stunted adult wings. We conclude that JAK/STAT signaling is critical for hinge fate specification and growth of the gap domain and that its restriction to the hinge is required for proper wing development.  相似文献   

16.
In the Drosophila wing, distal cells signal to proximal cells to induce the expression of Wingless, but the basis for this distal-to-proximal signaling is unknown. Here, we show that three genes that act together during the establishment of tissue polarity, fat, four-jointed and dachsous, also influence the expression of Wingless in the proximal wing. fat is required cell autonomously by proximal wing cells to repress Wingless expression, and misexpression of Wingless contributes to proximal wing overgrowth in fat mutant discs. Four-jointed and Dachsous can influence Wingless expression and Fat localization non-autonomously, consistent with the suggestion that they influence signaling to Fat-expressing cells. We also identify dachs as a gene that is genetically required downstream of fat, both for its effects on imaginal disc growth and for the expression of Wingless in the proximal wing. Our observations provide important support for the emerging view that Four-jointed, Dachsous and Fat function in an intercellular signaling pathway, identify a normal role for these proteins in signaling interactions that regulate growth and patterning of the proximal wing, and identify Dachs as a candidate downstream effector of a Fat signaling pathway.  相似文献   

17.
Yan J  Huen D  Morely T  Johnson G  Gubb D  Roote J  Adler PN 《Genetics》2008,180(1):219-228
The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified mwh as CG13913, which encodes a novel G protein binding domain–formin homology 3 (GBD–FH3) domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that mwh had two temporally separate functions in wing development. Evidence for these two functions also came from temperature-shift experiments with a temperature-sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to ensure a single hair is formed.  相似文献   

18.
In addition to the heart proper, insects possess wing hearts in the thorax to ensure regular hemolymph flow through the narrow wings. In Drosophila, the wing hearts consist of two bilateral muscular pumps of unknown origin. Here, we present the first developmental study on these organs and report that the wing hearts originate from eight embryonic progenitor cells arising in two pairs in parasegments 4 and 5. These progenitors represent a so far undescribed subset of the Even-skipped positive pericardial cells (EPC) and are characterized by the early loss of tinman expression in contrast to the continuously Tinman positive classical EPCs. Ectopic expression of Tinman in the wing heart progenitors omits organ formation, indicating a crucial role for Tinman during progenitor specification. The subsequent postembryonic development is a highly dynamic process, which includes proliferation and two relocation events. Adults lacking wing hearts display a severe wing phenotype and are unable to fly. The phenotype is caused by omitted clearance of the epidermal cells from the wings during maturation, which inhibits the formation of a flexible wing blade. This indicates that wing hearts are required for proper wing morphogenesis and functionality.  相似文献   

19.
While the membrane potential of cells has been shown to be patterned in some tissues, specific roles for membrane potential in regulating signalling pathways that function during development are still being established. In the Drosophila wing imaginal disc, Hedgehog (Hh) from posterior cells activates a signalling pathway in anterior cells near the boundary which is necessary for boundary maintenance. Here, we show that membrane potential is patterned in the wing disc. Anterior cells near the boundary, where Hh signalling is most active, are more depolarized than posterior cells across the boundary. Elevated expression of the ENaC channel Ripped Pocket (Rpk), observed in these anterior cells, requires Hh. Antagonizing Rpk reduces depolarization and Hh signal transduction. Using genetic and optogenetic manipulations, in both the wing disc and the salivary gland, we show that membrane depolarization promotes membrane localization of Smoothened and augments Hh signalling, independently of Patched. Thus, membrane depolarization and Hh‐dependent signalling mutually reinforce each other in cells immediately anterior to the compartment boundary.  相似文献   

20.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号