首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文对拟南芥菜(Arabidopsis thaliana)种子发育过程中贮藏蛋白的积累和蛋白体的形成进行了超微结构和免疫电镜定位的研究。常规超薄切片的电镜观察表明,在开花后第10天(10 DAF),高电子密度的蛋白质物质开始在子叶细胞的液泡中沉积。这一过程一直延续到种子接近成熟(14 DAF),这时液泡中充满了蛋白质物质,转变成为大的蛋白体。利用了该种植物主要种子贮藏蛋白之一的12 s球蛋白的单克隆抗体作为免疫探针,以蛋白质A-胶体金电镜技术对12 s种子蛋白进行了细胞内定位,证实了在液泡中积累的物质为种子贮藏蛋白。实验结果表明在拟南芥菜中,子叶细胞中的液泡是蛋白体的前体,肯定了蛋白体的发生起源于液泡的观点。本文还对应用胶体金电镜技术进行细胞内定位的某些问题作了初步探讨。  相似文献   

2.
小麦加工品质相关贮藏蛋白、基因及其遗传改良研究进展   总被引:2,自引:0,他引:2  
随着小麦以及相关近缘种属基因组测序的完成,各类分子生物学技术应用于小麦品质相关蛋白基因的研究越来越多,新蛋白和新基因的发现为小麦品质遗传改良提供了更大的研究空间。本文简要概述了传统贮藏蛋白的研究现状,着重介绍了目前新发现的与小麦加工品质相关的贮藏蛋白和基因的研究进展,从遗传改良的角度上提出目前存在的问题及发展方向,以期为我国小麦品质研究提供有价值的理论参考,促进品质研究更好的应用于小麦育种的实践。  相似文献   

3.
利用普通小麦(TriticumaestivumL.)高分子量谷蛋白亚基(HMWGS)多克隆抗体和单克隆抗体,对小麦品质性状及不同麦类作物近缘种属的籽粒贮藏蛋白进行了免疫化学测定,以建立小麦品种性状的快速测定方法并研究不同麦类作物胚乳贮藏蛋白的免疫同源性。结果表明:抗原抗体反应与品质性状的相关性因抗体种类及品质性状的不同而不同,多抗略优于单抗,不同单、多抗间相差较大;籽粒蛋白质含量及干、湿面筋含量与吸附值相关程度较高,与沉淀值则中等,而面包性状相关性较差。多克隆抗体吸附值与籽粒蛋白质含量、湿面筋含量、干面筋含量、面包体积及面包比容的最大相关系数分别为0.7620、0.8942、0.8873、0.6103、0.4598和0.4744,单克隆抗体吸附值与其最大相关系数分别为0.7837、0.7745、0.7822、0.6841、0.6873和0.5982。小麦近缘种属籽粒贮藏蛋白与普通小麦1Dy10亚基具有一定程度的免疫同源性,其中以黑麦(SecalecerealeL.)、斯卑尔脱(T.speltaL.)、节节麦(AegilopssquarrosaL.)及圆锥小麦(T.turgidumL.)与其同源程度较高。  相似文献   

4.
小麦等谷类植物种子贮藏蛋白基因的表达与调控   总被引:3,自引:0,他引:3  
高等植物在成熟期的主要生理过程是将蛋白质、淀粉和脂肪等贮藏在种子中。贮藏在种子中的蛋白质称为种子贮藏蛋白。小麦、水稻、玉米等粮食作物是人类和家畜摄取蛋白质的重要来源。研究贮藏蛋白基因在种子发育过程中的表达机制,是进一步应用生物技术改良作物的基础工作。1谷物  相似文献   

5.
小麦醇溶蛋白的研究   总被引:4,自引:0,他引:4  
丁虹 《遗传》1988,10(6):39-41
根据胚乳蛋白在不同溶荆中的溶解能力,可将小 麦胚乳蛋白分为四个组份臼”,其中可溶于70%酒精 的贮藏蛋白,称为小麦醇溶蛋白(gliadin),醇溶蛋白只 存在于禾本科植物种子中,它们构成了大部分具有重 要经济价值的谷物籽粒的主要贮藏蛋白〔,.〕。在小麦 中,它的含量约占籽粒总蛋白的一半。醇溶蛋白位于 胚乳的蛋白体内,主要存在于亚糊粉层,其富含疏水性 氨基酸,如亮氨酸, 氨酸、脯氨酸和谷酞胺等,缺乏亲 水性氨基酸,如赖氨酸、色氨酸和蛋氨酸等。氨基酸谱 的不平衡是使醇溶蛋白含量较高的小麦在实际应用上 受限制的一个重要原因。  相似文献   

6.
小麦贮藏蛋白与小麦品质性状的关系及研究进展   总被引:8,自引:0,他引:8  
邓志英  田纪春 《生命科学》2003,15(4):233-237,210
小麦贮藏蛋白尤其是谷蛋白与醇溶蛋白的组成及所占比例是影响小麦加工品质的主要因素。本文对近年来国内外小麦蛋白亚基和小麦品质性状的研究现状进行了综述,同时介绍了小麦品质性状的遗传规律及其与品质的关系。  相似文献   

7.
以优异小麦品种“小偃6号”的高分子量麦谷蛋白亚基(high molecular weight glutenin subunit, HMW-GS)1Bx14和1By15为混合抗原, 免疫BALB/c小鼠. 将其脾细胞和骨髓瘤细胞(SP2/0)融合, 采用间接ELISA筛选与有限稀释法克隆, 建立了一株稳定分泌单克隆抗体的杂交瘤细胞系. 单抗Ig亚类为IgG1. 蛋白质免疫印迹实验结果表明: 该单抗能与小麦所有HMW-GS发生强烈反应, 而与醇溶蛋白和低分子量谷蛋白亚基不反应. 能与普通小麦近缘种粗山羊草、硬粒小麦、黑麦和大麦的高分子量贮藏蛋白发生反应; 而与燕麦、玉米、高粱、谷子和水稻等禾谷类作物贮藏蛋白不发生反应. 另外, 利用原核表达载体pGEX-4T-1, 将HMW-GS N端、中央重复区和C端3个结构域分别在E. coli BL21中融合表达. 免疫印迹实验结果表明, 该单抗识别的抗原决定簇应位于中央重复区中的六肽和九肽之中. 对该单抗的抗原决定簇及其在小麦品质育种中的运用进行了讨论.  相似文献   

8.
单克隆抗体是现代生命科学研究的重要工具。随着分子生物学的发展,单克隆抗体在植物研究中发挥着越来越重要的作用。本文综述了单克隆抗体在蛋白表达、蛋白定位、蛋白相互作用、植物成分的定性与定量、植物成分纯化、植物病害检测、标签抗体等方面研究中的应用。  相似文献   

9.
小麦HMW谷蛋白亚基基因克隆研究进展   总被引:5,自引:1,他引:4  
高分子量麦谷蛋白亚基 (HMW GS)作为小麦胚乳中的重要贮藏蛋白 ,其组成及含量对小麦面粉的烘烤品质具有重要的决定作用。因此 ,改变小麦中HMW 谷蛋白的组成及含量是小麦品质改良的主要内容。而定向克隆小麦HMW GS基因则为利用基因工程方法改良小麦品质提供新的基因资源 ,从而为优质小麦的发展起到积极的推动作用。综述了近 2 0年来国内外小麦HMW GS基因克隆的研究进展 ,并讨论了近年来发展起来的一些新的基因克隆方法及其在小麦HMW GS基因克隆上的应用前景。  相似文献   

10.
高分子量谷蛋白亚基(HMW-GS,high molecular weight glutenin subunits)是小麦子粒贮藏蛋白的重要组成成分,其组成、搭配、表达水平及含量决定面团弹性和面包加工品质。本文主要介绍了小麦HMW-GS编码基因的克隆、分子特征、分子标记开发及其在小麦育种中的应用,并综述了不同HMW-GS与面粉加工品质之间的关系,以及HMW-GS基因遗传转化、微量配粉和突变体培育等方面的研究进展,分析了目前研究中存在的主要问题,认为通过分子标记辅助选择和转基因技术聚合优质亚基,培育优质面包小麦品种和明确各个HMW-GS基因的品质效应是今后的研究重点。  相似文献   

11.
The structure and properties of gluten: an elastic protein from wheat grain   总被引:12,自引:0,他引:12  
The wheat gluten proteins correspond to the major storage proteins that are deposited in the starchy endosperm cells of the developing grain. These form a continuous proteinaceous matrix in the cells of the mature dry grain and are brought together to form a continuous viscoelastic network when flour is mixed with water to form dough. These viscoelastic properties underpin the utilization of wheat to give bread and other processed foods. One group of gluten proteins, the HMM subunits of glutenin, is particularly important in conferring high levels of elasticity (i.e. dough strength). These proteins are present in HMM polymers that are stabilized by disulphide bonds and are considered to form the 'elastic backbone' of gluten. However, the glutamine-rich repetitive sequences that comprise the central parts of the HMM subunits also form extensive arrays of interchain hydrogen bonds that may contribute to the elastic properties via a 'loop and train' mechanism. Genetic engineering can be used to manipulate the amount and composition of the HMM subunits, leading to either increased dough strength or to more drastic changes in gluten structure and properties.  相似文献   

12.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain   总被引:1,自引:0,他引:1  

Background and Aims

Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.

Methods

Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.

Key Results

Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.

Conclusions

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.  相似文献   

13.
We have identified 3 cDNA clones related to the high-Mr group of storage proteins in barley endosperm, the D-hordeins. A cDNA library has been constructed from wheat endosperm poly(A+)-RNA and screened using one of the D-hordein cDNA clones. Two wheat clones which cross-hybridised to the barley clone have been identified, by hybrid-release translation and nucleotide sequence analysis, as partial copies of mRNAs encoding the high-Mr gluten polypeptides of wheat.  相似文献   

14.
高分子量麦谷蛋白亚基(HMW-GS)是小麦胚乳中一种具有多态性的蛋白质组分,在面团中它们可以通过相互之间或与低分子量麦谷蛋白亚基(LMw-Gs)之间形成二硫键来组成麦谷蛋白多聚体。由于其在小麦面粉加工所需的粘性和弹力方面具有极其重要的作用,过去几十年间在小麦加工品质相关蛋白研究方面的工作大多数集中在高分子量麦谷蛋白亚基上。近几年在高分子量麦谷蛋白亚基及其编码基因的鉴定、基因的遗传变异以及不同变异在小麦加工品质中的作用方面进行了大量研究。本文对近几年在HMW-GS领域的研究进展进行综述并且重点讨论HMW-GS的变异及其对小麦品质育种的重要意义。  相似文献   

15.
The CM-proteins, which are salt-soluble proteins that can beextracted with chloroform: methanol (2: 1, v/v), seem to bepresent in the endosperm of all the cereal species investigated.Antibodies raised against a mixture of the barley CM-proteins(A-H) cross-reacted with wheat and rye proteins in Ouchterlonytests and a detailed study was carried out for purified wheat(CM1, CM2. CM3. CM3') and barley (CMa, CMb, CMc, CMd) CM-proteins. [35Sl-Cysteine-labelled endosperm proteins from wheat and barleywere investigated by immuno-precipitation, electrophoresis andfluorography using the antibodies (A-H) and also those to amixture of wheat CM-proteins and to CMd. There was completeantigenic identity for all the wheat proteins and CMd, someof the other proteins showed partial antigenic identity. Previously proposed genetic and biochemical relationships amongthese proteins were confirmed in the present study. Key words: CM-Protein, Cereal endosperm, Immunochemistry  相似文献   

16.
17.
Thioredoxin and germinating barley: targets and protein redox changes   总被引:21,自引:0,他引:21  
Marx C  Wong JH  Buchanan BB 《Planta》2003,216(3):454-460
The endosperm and embryo of barley ( Hordeum vulgare L.) grain were investigated to relate thioredoxin h and disulfide changes to germination and seedling development. The disulfide proteins of both tissues were found to undergo reduction following imbibition. Reduction reached a peak 1 day earlier in the embryo than in the endosperm, day 1 vs. day 2. The profile in both cases resembled those observed with wheat and rice, i.e., the reduction of the storage proteins increased initially and then declined during the period of seedling growth. The extent of the increase in reduction observed with barley endosperm was, however, less pronounced than with the other cereals. Also, unlike wheat and rice, the storage proteins of the endosperm were highly reduced in the dry seed and the sulfhydryl content of glutelins showed no appreciable change during this period. The relative abundance of thioredoxin h during germination and early seedling growth differed in the embryo and endosperm: a progressive decrease in the endosperm (as seen with wheat) vs. an increase in the embryo. Thioredoxin h was found in the major seed tissues in characteristic forms. Three forms were found in the scutellum and aleurone, whereas two, which may represent isoforms, were identified in the root and the shoot. Using a recently developed strategy based on two-dimensional gel electrophoresis, several proteins were identified as specific targets for thioredoxin in the embryo following oxidation with H(2)O(2), among them barley embryo globulin 1, peroxiredoxin and acidic ribosomal protein P(3). The results confirm earlier findings with the endosperm of other cereals and extend the importance of thioredoxin-linked redox change to the germinating embryo for functions that potentially include dormancy, protection against reactive oxygen species, translation and the mobilization of storage proteins.  相似文献   

18.
In the developing endosperm of bread wheat (Triticum aestivum), seed storage proteins are produced on the rough endoplasmic reticulum (ER) and transported to protein bodies, specialized vacuoles for the storage of protein. The functionally important gluten proteins of wheat are transported by two distinct routes to the protein bodies where they are stored: vesicles that bud directly off the ER and transport through the Golgi. However, little is known about the processing of glutenin and gliadin proteins during these steps or the possible impact on their properties. In plants, the RabD GTPases mediate ER‐to‐Golgi vesicle transport. Available sequence information for Rab GTPases in Arabidopsis, rice, Brachypodium and bread wheat was compiled and compared to identify wheat RabD orthologs. Partial genetic sequences were assembled using the first draft of the Chinese Spring wheat genome. A suitable candidate gene from the RabD clade (TaRabD2a) was chosen for down‐regulation by RNA interference (RNAi), and an RNAi construct was used to transform wheat plants. All four available RabD genes were shown by qRT‐PCR to be down‐regulated in the transgenic developing endosperm. The transgenic grain was found to produce flour with significantly altered processing properties when measured by farinograph and extensograph. SE‐HPLC found that a smaller proportion of HMW‐GS and large proportion of LMW‐GS are incorporated into the glutenin macropolymer in the transgenic dough. Lower protein content but a similar protein profile on SDS‐PAGE was seen in the transgenic grain.  相似文献   

19.
Glutenin is a major determinant of baking performance and viscoelasticity, which are responsible for high-quality bread with a light porous crumb structure of a well-leavened loaf. We analyzed the diversity of glutenin genes from six wheat cultivars (Korean cvs. Keumgang and Jinpum, Chinese cvs. China-108 and Yeonnon-78, and Japanese cvs. Norin-61 and Kantou-107). Glutenins contain two types of isoforms such as high molecular weight glutenin subunit (HMW-GS) and low molecular weight glutenin subunit (LMW-GS). Glutenin fractions were extracted from wheat endosperm using Osborne solubility method. A total of 217 protein spots were separated on two-dimensional gel electrophoresis with isoelectric focusing (wide range of pH 3–10). The proteins spots were subjected to tryptic digestion and identified by matrix assisted laser desorption/ionization–time of flight mass spectrometry. HMW-GS (43 isoforms) and LMW-GS (seven isoforms) are directly responsible for producing high-quality bread and noodles. Likewise, all the seed storage proteins are digested to provide nutrients for the embryo during seed germination and seedling growth. We identified the diverse glutenin subunits in wheat cultivars and compared the gluten isoforms among different wheat cultivars according to quality. This work gives an insight on the quality improvement in wheat crop.  相似文献   

20.
Wheat storage proteins are deposited in the vacuole of maturing endosperm cells by a novel pathway that is the result of protein body formation by the endoplasmic reticulum followed by autophagy into the central vacuole, bypassing the Golgi apparatus. This model predicts a reduced role of the Golgi in storage protein accumulation, which has been supported by electron microscopy observations. To study this issue further, wheat cDNAs encoding three distinct proteins of the endomembrane system were cloned and characterized. The proteins encoded were homologues (i) of the ER translocon component Sec61 alpha, (ii) the vacuolar sorting receptor BP-80 which is located in the Golgi and clathrin-coated prevacuole vesicles (CCV), and (iii) the Golgi COPI coatomer component COP alpha. During endosperm development, the levels of all three mRNAs were highest in young stages, before the onset of storage protein synthesis, and declined with seed maturation. However, the relative mRNA levels of BP-80/Sec61 alpha and the COP alpha/Sec61 alpha were lower during the onset of storage protein synthesis than at earlier stages of endosperm development. These results support previous studies, suggesting a reduced function of the Golgi apparatus in wheat storage protein transport and deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号