首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
12-Hydroxyeicosatetraenoic acid (12-HETE) production from arachidonic acid by cerebral microvessels isolated from perfused adult murine brain was reduced by the lipoxygenase inhibitors baicalein, esculetin, gossypol, nordihydroguaiaretic acid, and quercetin. Except for quercetin and gossypol, the IC50 did not exceed 10 microM. Each inhibitor, except baicalein, also decreased microvessel prostaglandin production when present in concentrations above their IC50 value for 12-HETE. In contrast, inhibitors of the cytochrome P450 monooxygenase system, clotrimazole, metyrapone, and proadifen (SKF-525A), had little effect on microvessel 12-HETE production. Chiral phase HPLC analysis revealed that only the (S) enantiomer of 12-HETE was formed. The major microvessel metabolite of eicosapentaenoic acid co-eluted with 12-hydroxyeicosapentaenoic acid (12-HEPE) on reverse-phase HPLC and the (S) enantiomer of 12-HEPE on chiral phase HPLC. Furthermore, like 12-HETE, 12-HEPE production was blocked by lipoxygenase inhibitors. These studies demonstrate that brain microvessels produce only the (S) enantiomeric 12-hydroxy derivatives of both arachidonic acid and eicosapentaenoic acid by the action of a lipoxygenase that can be selectively inhibited by baicalein. Since arachidonic acid and eicosapentaenoic acid are available to cerebral blood vessels in certain pathological settings, these 12-hydroxy acid lipoxygenase products may mediate some of the cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   

2.
Epidemiological studies were performed in a Japanese fishing village when catches of fish were highest and in a Japanese farming village with usual fish consumption. Intake of eicosapentaenoic, docosahexaenoic and also arachidonic acid were significantly higher in the fishing village during the 3 days of the study than in the farming village. The correlation between eicosapentaenoic acid intake on the day when urine was collected and excretion of delta 17-2,3-dinor-6-keto-prostaglandin F1 alpha, the main urinary metabolite of prostaglandin I3, was highly significant, whereas there was no correlation between arachidonic or linoleic acid intake and excretion of 2,3-dinor-6-keto-prostaglandin F1 alpha, the main urinary metabolite of prostaglandin I2. We suggest that the arachidonic acid pool for prostaglandin I2 production is not quickly influenced by dietary linoleic or arachidonic acid because of a large pool size of arachidonic acid and a slow conversion of linoleic acid to arachidonic acid, while prostaglandin I3 formation is directly related to the intake of eicosapentaenoic acid.  相似文献   

3.
The effects of alcohols on the formation of leukotrienes, 5-HETE and prostaglandin D2 in mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at least two different effects on the production of these arachidonic acid metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol and methanol stimulated the production of lipoxygenase metabolites, but had no large stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under these conditions, n-propanol and t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220-430 mM).  相似文献   

4.
Epidemiological studies were performed in a Japanese fishing village when catches of fish were highest and in a Japanese farming village with usual fish consumption. Intake of eicosapentaenoic, docosahexaenoic and also arachidonic acid were significantly higher in the fishing village during the 3 days of the study than in the farming village. The correlation between eicosapentaenoic acid intake on the day when urine was collected and excreion of Δ 17-2,3-dinor-6-keto-prostaglandin F, the main urinary metabolite of prostaglandin I3, was highly significant, whereas there was no correlation between arachidonic or linoleic acid intake and excretion of 2,3-dinor-6-keto-prostaglandin F, the main urinary metabolite of prostaglandin I2. We suggest that the arachidonic acid pool for prostaglandin I2 production is not quickly influenced by dietary linoleic or arachidonic acid because of a large pool size of arachidonic acid and a slow conversion of linoleic acid to arachidonic acid, while prostaglandin I3 formation is directly related to the intake of eicosapentaenoic acid.  相似文献   

5.
In vitro and in vivo studies have shown that gamma-linoleic acid (GLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) can selectively kill tumor cells. In a clinical trial, the effectiveness of intratumoral administration of GLA in patients with gliomas was studied. Of the 6 patients treated, all showed substantial response to GLA as documented by computerized tomography. There were no acute side-effects due to the therapy. This report demonstrates that intratumoral administration of GLA is a possible approach to the treatment of human glial tumors.  相似文献   

6.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

7.
The effects of alcohols on the formation of leukotrienes, 5-HETE prostagladin D2 In mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at two-different effects on the production of these arachidonic add metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol methanol stimulated the production of lipoxygenase metabolites, but had no stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under conditions,n-propanol t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220–430 mM),  相似文献   

8.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

9.
Arachidonic acid at 100 nM stimulated internalisation of 125I-leptin in human placental choriocarcinoma (BeWo) cells by 3-fold compared with controls. In contrast, eicosapentaenoic acid at similar concentration decreased internalisation of leptin by 2-fold. Use of ibuprofen and indomethacin (inhibitors of prostaglandin synthesis) inhibited the stimulatory effect of arachidonic acid. Prostaglandin E(2), a cyclooxygenase metabolite of arachidonic acid, stimulated internalisation of leptin by these cells. All these data demonstrate that stimulation of leptin internalisation by arachidonic acid in placental trophoblasts may be mediated via prostaglandin E(2).  相似文献   

10.
Prostaglandins (PGs) have been detected in many different plants and certain microorganisms. A few prostaglandin-like compounds have also been shown to occur in plants such as flax,Chromolaena morii, and aquatic sedge; and direct precursors (arachidonic acid, di-homo-γ-linolenic acid and eicosapentaenoic acid) have been detected in a variety of plants and microorganisms, including certain red algae, brown algae, green algae, and saltwater diatoms. Furthermore, arachidonic acid has been found in mosses and a liverwort. It has also been reported that arachidonic acid occurs in certain angiosperms, namely, poplar (Populus balsamifera), wheat germ oil,Aloe vera, andAllium sativum (garlic). In our studies on the possible physiological effects of prostaglandins we found that a PG possibly has an effect on the flowering of the short-day plantPharbitis nil. It has hastened flower formation by 28 days as compared with controls under inductive conditions (short days), and certain inhibitors of PG-biosynthesis inhibited flowering to a greater or lesser extent. In other physiological studies of prostaglandins, it was found that they have an effect on such aspects as GA3-controlled responses in barley endosperm, inhibition of crown gall tumor formation on potato discs, and certain electron-flow reactions in isolated chloroplasts. In corn leaf segments it has an effect on photosynthesis, nucleic acid metabolism, and protein synthesis. The effect on four plant bioassay systems was negligible. It has also been reported that PGs play a role in the regulation of cell membrane permeability.  相似文献   

11.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

12.
The leukotrienes   总被引:2,自引:0,他引:2  
This paper reviews the leukotrienes, a new group of biologically active compounds in the metabolism of eicosapolyenoic acids. The leukotrienes are acyclic eicosanoids that arise through the 5-lipoxygenase pathway from eicosatrienoic, eicosatetraenoic, and eicosapentaenoic acid. Of these eicosatetraenoic acid, arachidonic acid, is the most important source of leukotrienes. Leukotriene B4 (LTB4), a dihydroxy metabolite, has been shown to exert marked chemotactic effect in many different animal species. LTB4 probably plays a role in inflammatory responses, and has been detected in several pathologic conditions. Reaction of LTA4, another lipoxygenase metabolite of arachidonic acid, with glutathione yields peptidolipid leukotrienes, LTC4, LTD4, and LTE4; these are components of slow reacting substance (SRS and SRS-A). The peptidolipid leukotrienes are potent bronchoconstrictors and enhance mucus production in the lungs. Furthermore, they constrict coronary arteries and have a negative inotropic effect. They probably play an important role in asthma and anaphylaxis. LTB4 and the peptidolipid leukotrienes may be important in several other organs, too, e.g., the skin and the eye. They may exert effects on a variety of smooth muscles and have neuronal and immunological effects.  相似文献   

13.
We have previously shown that cis-unsaturated fatty acids (c-UFAs) possess a selective tumoricidal action that can be blocked by antioxidants. This property of c-UFAs might be due to various factors, including increased uptake, unusual distribution, or an ability to alter free radical generation in tumor but not normal cells. 14C-labelled linoleic acid (LA) uptake was almost the same in normal and tumor cells, whereas that of 14C-labelled arachidonic acid (AA) and 14C-labelled eicosapentaenoic acid (EPA) in tumor cells was substantially less than in normal cells. Tumor cells incorporate major portions of the fatty acids in the ether lipid and phospholipid fractions, whereas normal cells incorporate the fatty acids primarily in the phospholipid fraction. LA, AA, and EPA augmented nitroblue tetrazolium reduction, an indication of free radical generation, selectively in the tumor cells. These results suggest that there are significant differences between normal and tumor cells in fatty acid uptake and distribution, and in the ability of fatty acids to generate free radicals.  相似文献   

14.
We have investigated the effects of TGF-beta on the ability of the human fibrosarcoma cell line, HT1080, to invade a reconstituted basement membrane (Matrigel) in vitro. Exposure of HT1080 cells to TGF-beta (1-10ng/ml) caused a dose-dependent inhibition of HT1080 cell invasion. Unexpectedly, TGF-beta (10ng/ml) significantly enhanced (10-fold) the mRNA expression of the 68-72kDa latent type IV collagenase. Zymogram analysis revealed a 7-fold increase in the 68-72kDa latent type IV collagenase concomitant with an increase in the activated form (62kDa). TGF-beta induced the 92kDa type IV collagenase to a lesser degree. HT1080 cells exposed to TGF-beta also produced more tissue inhibitor of metalloprotease (TIMP) at both the mRNA (10-fold) and protein levels (5-fold). Although TGF-beta induced both type IV collagenases and TIMP, the net collagenolytic activity in the conditioned media after invasion assay was reduced in the presence of TGF-beta. The data suggest that the inhibition of invasiveness is due, at least in part, to the increased TIMP expression. These data suggest that TGF-beta may play a role in tumor cell invasion by increasing the expression of TIMP.  相似文献   

15.
The antitumor activity and arachidonic acid metabolism of operationally defined macrophage populations was examined. Macrophages from mice injected with Mycobacterium bovis (strain BCG) or with pyran-copolymer were cytotoxic for tumor cells. The major arachidonic acid metabolite of these cells was PGE2. Neither resident nor elicited macrophages were cytotoxic. However, elicited macrophages as well as macrophages from BCG injected mice inhibited tumor cell growth. The production of arachidonic acid metabolites by elicited cells, while low initially, was followed by a rapid increase in PGE2. The major metabolites of resident cells were PGE2 and prostacyclin. The cAMP:cGMP ratio correlated with the metabolic activity of the cells.  相似文献   

16.
L-carnitine is an essential energy-providing compound to the cell since it transports long chain fatty acids through the mitochondrial membrane and delivers them to the beta-oxidation pathway for catabolism and/or entrance to biosynthetic pathways. Some of the early events taking place in immune cells after L-carnitine inoculation in vitro are defined in this report. Using arachidonic acid as a fatty acid source, we determined the utilization rate of L-carnitine by murine T-, B-lymphocytes and macrophages within two hours of cell culture, its effect on prostaglandin E1 and E2 production and the levels of beta-hydroxy-butyrate. The results show that although all immune cells consume a small portion of L-carnitine, beta-hydroxy-butyrate decreases upon addition of arachidonic acid and/or L-carnitine indicating that active biosynthetic pathways are induced. L-carnitine is shown to increase the arachidonic acid-induced production of prostaglandins E1 and E2 in macrophages, while their secretion from T- and B-lymphocytes is decreased. These findings indicate the L-carnitine may very rapidly alter the activation state of immune cells and lead to the development of various reactions, beneficial or not to the organism.  相似文献   

17.
Recombinant murine IL 1 stimulated arachidonic acid metabolism by rat liver cells (the C-9 cell line) and squirrel monkey smooth muscle cells, and in the presence of tumor promoters this stimulation was synergistic. In the rat liver cells that had been prelabeled with [3H]arachidonic acid, the release of 6-keto-PGF1 alpha and arachidonic acid also was stimulated by the IL 1, and this release was synergistic in the presence of TPA. 1-Oleoyl-2-acetyl-glycerol (OAG) stimulated prostaglandin production, and IL 1 synergized the prostaglandin production in the presence of OAG. OAG and TPA mimic the endogenous activator of protein kinase C, 1,2-diacylglycerol, and therefore IL 1 may amplify arachidonic acid metabolism during signal transmission processes.  相似文献   

18.
The presence of arachidonic acid lipoxygenase pathways in murine eosinophils was demonstrated by the isolation and identification of several lipoxygenase products from incubations of these cells. The most abundant arachidonate metabolite from murine eosinophils stimulated with ionophore A23187 and exogenous arachidonic acid was 12-S-hydroxyeicosatetraenoic acid (12-S-HETE), and the next most abundant was 15-HETE. Two families of leukotrienes were also recovered from these incubations. One family comprised the hydrolysis products of leukotriene A4, and the other included products derived from the 14,15-oxido analog of leukotriene A4 (14,15-leukotriene A4). Two double oxygenation products of arachidonate were also identified. These compounds were a 5,15-dihydroxyeicosatetraenoic acid (5,15-diHETE) and a 5,12-dihydroxyeicosatetraenoic acid (5,12-diHETE). Eosinophil stimulation promoter is a murine lymphokine which enhances the migration of eosinophils. When murine eosinophils were incubated with eosinophil stimulation promoter in concentrations sufficient to produce a migration response, a 2-3-fold increase in the production of 12-HETE was observed compared to unstimulated cells. Coupled with the recent demonstration that arachidonic acid lipoxygenase inhibitors suppress the migration response to eosinophil stimulation promoter and that 12-HETE induces a migration response, this observation provides further evidence in support of the hypothesis that eosinophil stimulation promoter stimulation of eosinophils results in the generation of lipoxygenase products which modulate the migratory activity of the cells.  相似文献   

19.
Rats, acclimatized on a control diet, were fed for 60 days with diets, supplemented with 10% fat of either marine Hilsa fish (Hilsa ilisa) or fresh-water Chital fish (Notopterus chitala). The percentage of eicosapentaenoic acid in chital oil diet was 0.57 times that of the hilsa oil diet, but the eicosapentaenoic to arachidonic acid ratio in the latter (4.08) was 3.2 times that of the former (1.27). Otherwise these two diets were comparable in respect to total saturated, monounsaturated and n-3 polyunsaturated fatty acid contents. Results showed that of the two only hilsa oil diet could significantly lower platelet aggregability and in vitro thromboxane production, through replacement of arachidonic acid in platelet phospholipid by eicosapentaenoic acid. The antithrombic criteria of the oil seems to be a combination of low arachidonic acid content and high eicosapentaenoic to arachidonic acid ratio.  相似文献   

20.
Brain Microvessels Produce 12-Hydroxyeicosatetraenoic Acid   总被引:3,自引:3,他引:0  
Cerebral microvessels isolated from perfused, adult murine brain produce a compound with the chromatographic properties of a monohydroxyeicosatetraenoic acid when incubated with arachidonic acid or stimulated with calcium ionophore A23187. The formation of this arachidonic acid metabolite is not reduced in the presence of the cyclooxygenase inhibitor ibuprofen, but it is abolished by the lipoxygenase inhibitor nordihydroguaiaretic acid. Analysis by gas chromatography combined with chemical ionization and electron impact mass spectrometry of reduced and nonreduced derivatives of the metabolite, indicate that the compound is 12-hydroxyeicosatetraenoic acid. Fractions of isolated microvessels enriched with capillaries produce 2.1 times more 12-hydroxyeicosatetraenoic acid per microgram of protein than do fractions of microvessels enriched with arterioles. These studies confirm that brain microvessels can produce 12-hydroxyeicosatetraenoic acid and strongly suggest that cerebral endothelia are the primary source of microvessel-derived 12-hydroxyeicosatetraenoic acid. They further suggest that in brain injury, the liberation and accumulation of arachidonic acid in cerebral tissues may lead to the production of 12-hydroxyeicosatetraenoic acid within microvessels. The 12-hydroxyeicosatetraenoic acid formed in this way may mediate some of the blood-brain barrier and cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号