首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction selectivity of Pseudomonas cepacia, Rhizomucor miehei, and Candida antarctica B lipases was assessed in multicompetitive esterification reaction mixtures containing an homologous series of n-chain even carbon number fatty acid (FA; C4-C18) substrates and a single alcohol cosubstrate (glycerol, 1,2-propanediol (1,2-PD), or 1, 3-propanediol (1,3-PD)) in tert-butyl methyl ether at water activity of 0.69 or 0.90 and a reaction temperature of 35 degrees C. For P. cepacia lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C16 > other FA; with 1,2-PD and 1, 3-PD, C16 > C8 > C14 > other FA. For R. miehei lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C12 > C10, C14 > other FA; with 1,2-PD and 1,3-PD, C8 > C12 > other FA. For C. antarctica B lipase, the ordinal patterns of FA selectivities observed were, with glycerol, C8 > C10, C6, C12 > other FA; with 1, 2-PD, C8 > C10, C6 > other FA; and with 1,3-PD, C8 > C10 > C6 > other FA. The differences in selectivity among FA ranged up to 16-fold, depending upon the lipase and alcohol cosubstrate used. These findings represent intrinsic and substrate-modulated features of FA selectivities that are of particular relevance to the use of lipases for acylglycerol synthesis reactions.  相似文献   

2.
The effect of water activity (a(w)) and immobilization on fatty acid (FA) selectivity of Burkholderia (formerly Pseudomonas) cepacia, Rhizomucor miehei, Candida antarctica (type B), and Candida rugosa lipases in esterification reactions was determined. Studies were based on measuring ester formation in multicompetitive reaction mixtures containing either the homologous series of even carbon number n-chain saturated FA (C4-C18) or a series of n-chain (un)saturated FA (C18:X, where X = 0-3 double bonds) as cosubstrates with 1,3-propanediol in ter-butyl methyl ether at a(w) of 0.19, 0.69, and 0.90. Activity and FA selectively patterns were similar for free and Celite-adsorbed lipases in response to changes in a(w'), although specific effects were observed for selectivity of B. cepacia and C. rugosa lipases toward C16 and C4/C6 FA, respectively. Also, selectivity toward unsaturated C18:X FA as a group was modulated by changes in a(w) for three of the four lipase studied. Resin-fixed lipases from R. miehei and C. antarctica exhibited profound differences in activity and FA selectively in response to changes in a(w'), relative to free and Celite-bound forms. These findings suggest that FA selectivity for lipid modification is influenced by a(w) and immobilization, but that each lipase has a characteristic response to these factors in a manner that cannot be predicted.  相似文献   

3.
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.  相似文献   

4.
Biosynthesis of lipids was investigated in growing 293 cells stably expressing fatty acid (FA) transport protein 1 (FATP1), a bifunctional polypeptide with FA transport as well as fatty acyl-CoA synthetase activity. In short-term (30 s) incubations, FA uptake was increased in FATP1 expressing cells (C8 cells) compared with the vector (as determined by BODIPY 3823 staining and radioactive FA uptake). In long-term (4 h) incubations, incorporation of [(14)C]acetate, [3H]oleic acid, or [(14)C]lignoceric acid into 1,2,3-triacyl-sn-glycerol (TG) was elevated in C8 cells compared with vector, whereas incorporation of radiolabel into glycerophospholipids was unaltered. The increase in TG biosynthesis correlated with an increase in 1,2-diacyl-sn-glycerol acyltransferase activity in C8 cells compared with vector. In contrast, incorporation of [(14)C]acetate into sphingomyelin (SM) and cholesterol, and [3H]oleic acid or [(14)C]lignoceric acid into SM was reduced due to a reduction in de novo biosynthesis of these lipids in C8 cells compared with vector. The results indicate that exogenously supplied FAs, and their subsequently produced acyl-CoAs, are preferentially channeled by an FATP1 linked mechanism into the TG biosynthetic pathway and that such internalized lipids down-regulate de novo SM and cholesterol metabolism in actively growing 293 cells.  相似文献   

5.
Several methods including microwave, Frenchpress, autoclave, bead-beating, ultrasonication, and osmotic shock were compared to identify the most effective microalgal cell disruption method. Botryococcus braunii LB572 was cultured in 5 L flasks containing JM medium mixed with oceanic sediment extract for 13 days. Among the methods tested, enhanced lipid extraction was achieved through microwave treatment (2450MHz, 1250W at 150°C for 20 min). Oleic (C18:1), linolenic (C18:3), and palmitic acids (C16:0) were found to be the major fatty acids among the C14-C24 acids from extracted lipid. In addition, the optimal conditions of transesterification were as follows: 70 mL of methanol, 6 mL of sulfuric acid, 8 mL of chloroform, and boiling at 100°C for 30 min; 85.4% of C14-C24 FAME and 78.5% of C16-C18 FAME were esterified from transesterifiable lipids.  相似文献   

6.
Thermogenic endurance and development of metabolic cold adaptation in birds may critically depend on their ability to synthesize and use fatty acids (FA) as fuel substrates. Hepatic lipogenesis and the capacity to oxidize FA in thermogenic tissues were measured in cold-acclimated (CA) ducklings (Cairina moschata) showing original mechanisms of metabolic cold adaptation in the absence of brown adipose tissue, the specialized thermogenic tissue of rodents. The rate of FA synthesis from [U-(14)C]glucose and from [1-(14)C]acetate, measured in incubated hepatocytes isolated from 5-wk-old thermoneutral (TN; 25 degrees C) or CA (4 degrees C) fed ducklings, was higher than in other species. Hepatic de novo lipogenesis was further increased by cold acclimation with both glucose (+194%) and acetate (+111%) as precursor. Insulin slightly increased (+11-14%) hepatic lipogenesis from both precursors in CA ducklings, whereas glucagon was clearly inhibitory (-29 to -51%). Enhanced de novo lipogenesis was associated with higher (+171%) hepatocyte activity of glucose oxidation and larger capacity (+50 to +100%) of key lipogenic enzymes. The potential for FA oxidation was higher in liver (+61%) and skeletal muscle (+29 to +81%) homogenates from CA than from TN ducklings, suggesting that the higher hepatic lipogenesis may fuel oxidation in thermogenic tissues. Present data underline the high capacity to synthesize lipids from glucose in species like muscovy ducks susceptible to hepatic steatosis. Lipogenic capacity can be further increased in the cold and may represent an important step in the metabolic adaptation to cold of growing ducklings.  相似文献   

7.
Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-(13)C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase.  相似文献   

8.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

9.
When [14C]linoleic acid (18:2(n-6)) or [14C]dihomogammalinolenic acid (20:3(n-6)) was incubated with isolated liver cells from rats fed an essential fatty acid deficient diet, delta 6- and delta 5-desaturation, chain elongation and synthesis of 14C-labelled C14-C18 fatty acids (from [14C]acetate) were enhanced in female cells compared with male ones. No sex difference in total secretion of very low density lipoproteins (VLDL) was observed. However, VLDL secreted from female cells contained significantly more C16-C18 fatty acids than male cells. It is suggested that the observed sex differences, at least in part, may be related to the different content of fatty acid binding proteins in female cells compared with males.  相似文献   

10.
1. Specific radioactivities of milk triglyceride fatty acids and gamma- and delta-hydroxy fatty acids were measured after the intramammary infusion of [1-(14)C]acetate, delta-hydroxy[1-(14)C]laurate and [1-(14)C]laurate as their sodium salts into fed lactating goats. 2. Net incorporations of the radioactive tracer into the total milk lipids were comparable, being 16, 17 and 21% of the label infused respectively. 3. The specific radioactivities of the C(4)-C(8) fatty acids after [1-(14)C]acetate infusion were lower than those of the C(10)-C(14) fatty acids. 4. After delta-hydroxy[1-(14)C]laurate administration the milk triglyceride fatty acids were labelled and their specific radioactivities were characterized by decreasing values with increasing chain length of the fatty acids, implicating C(4) unit incorporation. 5. The gamma- and delta-hydroxy fatty acids isolated after [1-(14)C]laurate infusion were highly labelled and the milk triglyceride fatty acids, other than laurate, exhibited a labelling pattern similar to that of the fatty acids derived from the radioactive delta-hydroxy fatty acid. 6. Evidence is presented for the existence of saturated fatty acid delta-oxidation in the mammary gland, in which the gamma- and delta-hydroxy fatty acids are active intermediates.  相似文献   

11.
《Insect Biochemistry》1991,21(3):285-291
The mandibular organs (MO) of crustaceans secrete methyl farnesoate (MF) and farnesoic acid (FA). To better understand the secretory activity of MO, the kinetics of production and release of both compounds were determined in vitro by following incorporation of [2-14C]acetate and l-[3H-methyl]methionine into MF and [2-14C]acetate into FA by MO of Procambarus clarkii. MO released more FA than MF but contained more MF. In medium lacking unlabeled acetate, the percentage incorporation of [14C]acetate into MF, relative to [3H]methionine, was between 21 and 40%, suggesting that there may be an alternative source of C2 units.MO produce similar amounts of MF at concentrations of acetate from 0.08 to 10 mM. However, the addition of exogenous unlabelled FA to incubation media did not stimulate the biosynthesis of MF, raising the possibility that unlike JH biosynthesis in insects, the last step in MF production may be rate-limiting. Nonetheless, exogenous FA significantly reduced the incorporation of [14C]acetate into MF, suggesting that the glands use exogenous FA to synthesize MF. The absence of stimulation of FA production by exogenous FA indicates that there is no feedback effect of this product on the early steps in the biosynthetic pathway.  相似文献   

12.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

13.
A gene encoding an extracellular lipase (CaLIP4) from Candida albicans was successfully expressed in Saccharomyces cerevisiae after mutagenesis of its unusual CUG serine codon into a universal one. The ability of this lipase, which shares 60% sequence homology with the lipase/acyltransferase from Candida parapsilosis, to synthesise esters was investigated. CaLIP4 behaved as a true lipase, displaying activity towards insoluble triglycerides and having no activity in the presence of short-chain fatty acid (FA) esters and phosphatidylcholine. Methyl, ethyl and propyl esters were efficiently used. The lipase exhibited highest selectivity for unsaturated FA. With saturated FAs, C14–C16 acyl chains were preferred. In a biphasic aqueous/lipid system, CaLIP4 displayed a high alcoholysis activity with a range of alcohols (e.g. methanol, ethanol, propanol and isopropanol) as acyl acceptor. During the course of the alcoholysis reaction, new esters are produced at concentrations above the thermodynamic equilibrium of the esterification reaction, indicating that ester synthesis does not proceed by esterification but mainly by direct acyltransfer. Ester synthesis is under kinetic control due to the high rate of alcoholysis. Unwanted hydrolysis is limited by competition between the acyl acceptor (alcohol) and water for the acyltransfer reaction, favouring the alcohol.  相似文献   

14.
We previously showed that a fraction of the acetyls used to synthesize malonyl-CoA in rat heart derives from partial peroxisomal oxidation of very long and long-chain fatty acids. The 13C labeling ratio (malonyl-CoA)/(acetyl moiety of citrate) was >1.0 with 13C-fatty acids, which yields [13C]acetyl-CoA in both mitochondria and peroxisomes and < 1.0 with substrates, which yields [13C]acetyl-CoA only in mitochondria. In this study, we tested the influence of 13C-fatty acid concentration and chain length on the labeling of acetyl-CoA formed in mitochondria and/or peroxisomes. Hearts were perfused with increasing concentrations of labeled docosanoate, oleate, octanoate, hexanoate, butyrate, acetate, or dodecanedioate. In contrast to the liver, peroxisomal oxidation of 1-13C-fatty acids in heart does not form [1-13C]acetate. With [1-13C]docosanoate and [1,12-13C2]dodecanedioate, malonyl-CoA enrichment plateaued at 11 and 9%, respectively, with no detectable labeling of the acetyl moiety of citrate. Thus, in the intact rat heart, docosanoate and dodecanedioate appear to be oxidized only in peroxisomes. With [1-13C]oleate or [1-13C]octanoate, the labeling ratio >1 indicates the partial peroxisomal oxidation of oleate and octanoate. In contrast, with [3-13C]octanoate, [1-13C]hexanoate, [1-13C]butyrate, or [1,2-13C2]acetate, the labeling ratio was <0.7 at all concentrations. Therefore, in rat heart, (i) n-fatty acids shorter than 8 carbons do not undergo peroxisomal oxidation, (ii) octanoate undergoes only one cycle of peroxisomal beta-oxidation, (iii) there is no detectable transfer to the mitochondria of acetyl-CoA from the cytosol or the peroxisomes, and (iv) the capacity of C2-C18 fatty acids to generate mitochondrial acetyl-CoA decreases with chain length.  相似文献   

15.
BACKGROUND: We need information on the diet on which our genes evolved. OBJECTIVE: We studied the milk fatty acid [FA] composition of mothers living in the island of Chole [Tanzania, Indian Ocean]. These mothers have high intakes of boiled marine fish and coconut, and consume plenty amount of fruits and vegetables. DESIGN: The outcome was compared with three fish-eating tribes living along Tanzanian freshwater lakes [Kerewe, Nyakius, Nyiramba], four tribes living in the Tanzanian inland [Hadzabe, Maasai, Sonjo, Iraqw] and our milk FA database. RESULTS: Milk from Chole contained high levels of 12:0 [20.17 g%], 14:0 [21.19], 12:0/14:0 ratio [0.92 g/g], arachidonic acid [AA, 0.50 g%] and docosahexaenoic acid [DHA, 0.73], but low levels of linoleic acid [LA, 4.23]. The combination of a high medium chain fatty acid [MCFA; 相似文献   

16.
The biosynthesis of fatty acids has been studied in lactating rabbits at 6h after intravenous injection of sodium [1-(14)C]acetate. The specific radioactivities of the individual fatty acids (C(6:0) to C(14:0)) and the proportions of these fatty acids synthesized were similar in mammary tissue and milk. Hexanoic acid had the highest specific radioactivity, and the C(8:0)-C(14:0) fatty acids had similar specific radioactivities, which were about five times those of C(16) and C(18) acids. No radioactivity was detected in fatty acids of chain length C(14) in these tissues were similar to those of the long-chain fatty acids in the milk and mammary gland. The results show that the C(4:0)-C(14:0) fatty acids are synthesized within the mammary gland rather than by fatty acid uptake from circulating blood or by oxidation of long-chain fatty acids within the gland. We conclude that de novo synthesis of esterified fatty acids in vivo by this tissue has a high degree of chain-length specificity.  相似文献   

17.
1. Commercially available [2-14C]pyruvate and [2-14C]malonate were found to contain 3-6% (w/w) of [14C]acetate. 2. The contaminating [14C]acetate was efficiently utilized for fatty acid synthesis by isolated chloroplasts, whereas the parent materials were poorer substrates. 3. Maximum incorporation rates of the different substrates examined were (ng-atoms of C/h per mg of chlorophyll): [1-14C]acetate, 2676; [2-14C]pyruvate, 810; H14CO3-, 355; [2-14C]malonate, 19. 4. Products of CO2 fixation were probably not a significant carbon source for fatty acid synthesis in the presence of exogenous acetate.  相似文献   

18.
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
High-field proton magnetic resonance measurements at 400 MHz and 600 MHz allowed the evaluation of the preferred conformations of a leukotriene antagonist, FPL-55712. The experiments involved an analysis of proton-proton coupling constants, longitudinal relaxation time data and nuclear Overhauser effect experiments. The NMR parameters confirm the conformational features expected from X-ray and microwave data for related substances, such as rotational freedom about C14-C15 and C15-C16, synperiplanar arrangements for C7-C8-O-C14 and C16-O-C17-C18 and segmental motion in the propyl side chains.  相似文献   

20.
Resting cells of Aspergillus flavus synthesized aflatoxin from acetate as the sole carbon source after 36 h of incubation. Addition of pyruvate (5.5 mg/m) as cosubstrate to [1-14C]acetate and unlabeled acetate considerably reduced toxin production but increased the radioactivity on the tricarboxylic acid intermediates. This suggests that high tricarboxylic acid activity drastically affected toxin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号