首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
Dear Editor, Higher plants have evolved hundreds of genes encodingreceptor-like kinases (RLKs), which function as cell surfacereceptors perceiving developmental and environmental sig-nals (Shiu et al., 2004). Many RLKs have been shown to playspecific roles in hormone responses, developmental regula-tion, defense against pathogen infection, and adaptationto abiotic stresses (Chae et al., 2009; Antolin-Llovera et al.,2012). The mechanisms that ensure specific signal transduc-tion from each RLK to target cellular responses remain poorlyunderstood. Recent studies revealed that many RLKs trans-duce signals by phosphorylating receptor-like cytoplasmickinases (RLCKs), which lack the transmembrane domainsbut are anchored at the plasma membrane through lipidmodification (Tang et al., 2008; Zhang et al., 2010; Shi et al.,2013). There are over 400 RLKs and only about 150 RLCKs inArabidopsis (Shiu et al., 2004). One outstanding question iswhether each RLCK mediates signaling downstream of a spe-cific RLK, participates in multiple RLK pathways, or mediatescrosstalk between RLK pathways.  相似文献   

2.
As sessile organisms, plants have evolved with complex signaling networks to cope with the constantly changing environment. Receptor-like kinases (RLKs) and calcium both play important roles during the early stage of envi- ronmental responses in plants. RLKs are trans-membrane receptor kinases that sense extracellular signals, such as hormones, peptides, and pathogens, and trigger sig- nal transduction pathways leading to cellular responses (Osakabe et al., 2013).  相似文献   

3.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone.  相似文献   

4.
As sessile organisms, plants are exposed to pathogen invasions and environmental fluctuations. To overcome the challenges of their surroundings, plants acquire the potential to sense endogenous and exogenous cues, resulting in their adaptability. Hence, plants have evolved a large collection of plasma membrane-resident receptors, including RECEPTOR-LIKE KINASEs(RLKs) and RECEPTOR-LIKE PROTEINs(RLPs) to perceive those signals and regulate plant growth,development, and immunity. The ability of RLKs and RLPs to recognize distinct ligands relies on diverse categories of extracellular domains evolved. Co-regulatory receptors are often required to associate with RLKs and RLPs to facilitate cellular signal transduction. RECEPTOR-LIKE CYTOPLASMIC KINASEs(RLCKs) also associate with the complex, bifurcating the signal to key signaling hubs, such as MITOGEN-ACTIVATED PROTEIN KINASE(MAPK) cascades, to regulate diverse biological processes. Here, we discuss recent knowledge advances in understanding the roles of RLKs and RLPs in plant growth, development, and immunity, and their connection with co-regulatory receptors, leading to activation of diverse intracellular signaling pathways.  相似文献   

5.
Plants utilize plasma membrane-localized receptor-like kinases (RLKs) to sense extracellular signals to coordinate growth, development, and innate immune responses. BAK1 regulates multiple signaling pathways acting as a co-receptor of several distinct ligand-binding RLKs. It has been debated whether BAK1 serves as an essential regulatory component or only a signal amplifier without pathway specificity. This issue has been clarified recently. Genetic and structural analyses indicated that BAK1 and its homologs play indispensible roles in mediating brassinosteroid (BR) signaling pathway by directly perceiving the ligand BR and activating the receptor of BR, BRII. The mechanism revealed by these studies now serves as a paradigm for how a pair of RLKs can function together in ligand binding and subsequent initiation of signaling.  相似文献   

6.
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens.  相似文献   

7.
Plants are multi-cellular organisms that live in diverse and fluctuating environments. Cell-cell and cell-environment com- munication are therefore critical to plant growth and develop- ment. In animals, transmembrane receptor protein tyrosine kinases play significant roles in cell-cell signaling. There was a great deal of surprise in the plant community, however, when the first receptor-like protein kinase (RLK) was isolated from maize by John C.  相似文献   

8.
Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined.  相似文献   

9.
Ethylene, a gaseous plant hormone, plays critical roles in plant growth, development, and response to environment. Ethylene-regulated processes are initiated by the elevation of ethylene biosynthesis, which is under tight control by a complex signaling network. An elevated level of ethyl- ene is then perceived by ethylene receptors in local and neighboring cells, which activates signaling pathways that lead to ethylene responses. Different types of tissues/cells have differential capacities in producing ethylene and dif- ferential sensitivity to ethylene, which are crucial to the diverse functions of ethylene in plants. This report high- lights recent advances in our understanding of kinases and phosphatases in ethylene biosynthesis and signaling.  相似文献   

10.
Abscission is the process by which plants discard organs in response to environmental cues/stressors, or as part of their normal development. Abscission has been studied throughout the history of the plant sciences and in numerous species. Although long studied at the anatomical and physiological levels, abscission has only been elucidated at the molecular and genetic levels within the last two decades, primarily with the use of the model plant Arabidopsis thaliana. This has led to the discovery of numerous genes involved at all steps of abscission, including key pathways involving receptor-like protein kinases (RLKs). This review covers the current knowledge of abscission research, highlighting the role of RLKs.  相似文献   

11.
During plant development, the frequency and context of cell division must be controlled, and cells must differentiate properly to perform their mature functions. In addition, stem cell niches need to be maintained as a reservoir for new cells. All of these processes require intercellular signaling, whether it is a cell relaying its position to other cells, or more mature cells signaling to the stem cell niche to regulate the rate of growth. Receptor-like kinases have emerged as a major component in these diverse roles, especially within the Arabidopsis root. In this review, the functions of receptor-like kinase signaling in regulating Arabidopsis root development will be examined in theareas of root apical meristem maintenance, regulation of epidermal cell fate, lateral root development and vascular differentiation.  相似文献   

12.
As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to ...  相似文献   

13.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) belong to a large group of cell surface proteins involved in many aspects of plant development and environmental responses in both monocots and dicots. Brassinosteroid insensitive 1 (BRI1), a member of the LRR X subfamily, was first identified through several forward genetic screenings for mutants insensitive to brassinosteroids (BRs), which are a class of plant-specific steroid hormones. Since its identification, BRI1 and its homologs had been proved as receptors perceiving BRs and initiating BR signaling. The co-receptor BRIl-associated kinase 1 and its homologs, and other BRI1 interacting proteins such as its inhibitor BRI1 kinase inhibitor I (BKI1) were identified by genetic andbiochemical approaches. The detailed mechanisms of BR perception by BRI1 and the activation of BRI1 receptor complex have also been elucidated. Moreover, several mechanisms for termination of the activated BRI1 signaling were also discovered. In this review, we will focus on the recent advances on the mechanism of BRI1 phosphorylation and activation, the regulation of its receptor complex, the structure basis of BRI1 ectodomain and BR recognition, its direct substrates, and the termination of the activated BRI1 receptor complex.  相似文献   

14.
Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specificallysummarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed.  相似文献   

15.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


16.
The paper presents problems and solutions related to hyperspectral image pre‐processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions.

The proposed application and sample result of hyperspectral image analysis.  相似文献   


17.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号