首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To test wastewater and river water in Japan for genogroup IV norovirus (GIV NoV).
Methods and Results:  Influent and effluent samples from a wastewater treatment plant and the Tamagawa River water samples were collected monthly for a year. The water samples were concentrated by the adsorption–elution method, using an HA electronegative filter with acid rinse procedure, followed by quantitative detection of GIV NoV using TaqMan-based real-time RT-PCR. Both wastewater and river water samples showed a high positive ratio of GIV NoV during winter and spring. The highest concentration in wastewater and river water was 6·9 × 104 and 1·5 × 104 copies l−1, respectively.
Conclusions:  Presence of GIV NoV in the environments demonstrates that not only GI and GII NoVs but also GIV strains are circulating and that routine monitoring of GIV NoV in water environments is recommended to understand its epidemics, environmental distribution and potential health risks.
Significance and Impact of the Study:  This is the first study providing quantitative data on the occurrence of GIV NoV in environmental water over a 1-year period.  相似文献   

2.
Aims: To investigate with high geographical resolution the small‐scale spatial and temporal distribution of the pathogen Vibrio vulnificus throughout the water column in a temperate Texas bay where numerous V. vulnificus infections had been reported by the regional media the previous summer. Methods and Results: Surface and bottom water samples were collected from 19 sites between April 2005 and October 2006 from Matagorda Bay, TX. Physicochemical parameters were measured and V. vulnificus were analysed using quantitative polymerase chain reaction (Q‐PCR) as a means of overcoming constraints of traditional culturing techniques. V. vulnificus was detected through out the year, although it’s temporal and spatial distribution was patchy. V. vulnificus abundances at individual sites ranged from <10 to >1·1 × 103 cells ml?1. No statistically reliable predictive model related to the physicochemical parameters could be developed for this pathogen. Conclusions: his study demonstrates that year round detection of V. vulnificus while likely in the viable but nonculturable (VBNC) state during the winter months and emphasizes why physicochemical factors are insufficient metrics for robust regression modelling of this pathogen. Significance and Impact of the Study: This study provides an effective new tool, Q‐PCR, to study environmental distribution of V. vulnificus and that in the light of the patchy distribution observed, new reliable approaches and a mechanistic understanding of pathogen ecology need to be considered to effectively model the aquatic distribution of V. vulnificus.  相似文献   

3.
Aims: To assess the presence of human adenovirus (HAdV), hepatitis A (HAV) virus and rotavirus A (RV‐A) in environmental samples from the Southern region of Brazil and to provide viral contamination data for further epidemiological studies and governmental actions. Methods and Results: Water samples from various sources (seawater, lagoon brackish water, urban wastewater, drinking water sources‐with and without chlorination and water derived from a polluted creek) and oysters of two growing areas were analysed by enzymatic amplification (nested PCR and RT‐PCR), quantification of HAdV genome (qPCR) and viral viability assay by integrated cell culture‐PCR (ICC‐PCR). From June 2007 to May 2008 in a total of 84 water samples, 54 (64·2%) were positive for HAdV, 16 (19%) for RV‐A and 7 (8·3%) for HAV. Viability assays showed nonpositive samples for HAV; though, infectious viruses were confirmed for RV‐A (12·5%) and HAdV (88·8%). Oyster samples by PCR were positive for HAdV (87·5%) and RV‐A (8·3%), but none for HAV. Quantitative PCR in oysters showed means loads in genomic copies (gc) of 9·1 × 104 gc g?1 (oyster farm south) and 1·5 × 105 gc g?1 (oyster farm north) and in waters ranging from 2·16 × 106 (lagoon water) to 1·33 × 107 gc l?1 (untreated drinking water). Conclusions: This study has shown a widespread distribution of the analysed viruses in this particular region with high loads of HAdV in the environment which suggests the relevance of evaluating these viruses as positive indicators of viral contamination of water. Significance and Impact of the Study: The environmental approach in this study provides data concerning the prevalence, viability and quantification of enteric viruses in environmental waters and oysters in the South region of Brazil and has indicated that their presence might pose a risk to population in contact with the environmental samples searched.  相似文献   

4.
Tracking human sewage microbiome in a municipal wastewater treatment plant   总被引:1,自引:0,他引:1  
Human sewage pollution is a major threat to public health because sewage always comes with pathogens. Human sewage is usually received and treated by wastewater treatment plants (WWTPs) to control pathogenic risks and ameliorate environmental health. However, untreated sewage that flows into water environments may cause serious waterborne diseases, as reported in India and Bangladesh. To examine the fate of the human sewage microbiome in a local municipal WWTP of Hong Kong, we used massively parallel sequencing of 16S rRNA gene to systematically profile microbial communities in samples from three sections (i.e., influent, activated sludge, and effluent) obtained monthly throughout 1 year. The results indicated that: (1) influent sewage bacterial profile reflected the human microbiome; (2) human gut bacterial community was the dominant force shaping influent sewage bacterial profile; (3) most human sewage bacteria could be effectively removed by the WWTP; (4) a total of 75 genera were profiled as potentially pathogenic bacteria, most of which were still present in the effluent although at a very low level; (5) a grouped pattern of bacterial community was observed among the same section samples but a dispersed pattern was found among the different section samples; and (6) activated sludge was less affected by the influent sewage bacteria, but it showed a significant impact on the effluent bacteria. All of these findings provide novel insights toward a mechanistic understanding of the fate of human sewage microbiome in the WWTP.  相似文献   

5.
Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.  相似文献   

6.
Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.  相似文献   

7.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   

8.
Aims: To evaluate throughput of seeded Legionella pneumophila bacteria in domestic point‐of‐use filters. Methods and Results: The filters were challenged with tap water seeded with Leg. pneumophila. After multiple challenge events (4·25 × 1011 CFU per filter), the levels of Legionella were lower in the effluent from the filter containing both copper and silver (mean 4·48 × 103 CFU ml?1) than in the effluent from the filter containing copper only (1·26 × 104 CFU ml?1; P < 0·001). After a single challenge event of approx. 5 × 109 CFU L. pneumophila per filter, there was no significant difference between the levels of Legionella in the effluents from a carbon filter containing copper and a carbon filter with no metals (mean 6·87 × 102 and 6·89 × 102 CFU ml?1, respectively; P = 0·985). Conclusions: Legionella was detected in filter effluent up to 6 weeks after being challenged, indicating that while filters may reduce the levels during an initial contamination event, the exposure is extended as the accumulated bacteria slough off over time. Significance and Impact of the Study: This study has provided an understanding of the response of Legionella to the use of silver and copper in domestic point‐of‐use carbon filters.  相似文献   

9.
Summary Three laboratory-scale water pipe systems were set up to study the effects of adding two levels of acetic acid (10 and 50 μg acetate eq-C l−1) on the bacterial regrowth in water pipes. The results of the water pipe test showed that nearly all carbon in the acetic acid could be readily utilized by bacteria and resulted in an increase in biomass concentration. The maximum heterotrophic plate counts in biofilm were equal to 3.5 × 104, 8.9 × 105 and 2.9 × 107 c.f.u. cm−2 while the maximum heterotrophic plate counts of free bacteria were equal to 1.2 × 103, 5.0 × 103 and 6.8 × 104 c.f.u. ml−1 for the blank and with addition of 10 and 50 μg acetate eq-C l−1. These results showed that addition of acetic acid to drinking water has a positive effect on the assimilable organic carbon content of drinking water and bacterial regrowth in the distribution system. This effect is enhanced with addition of high-level acetic acid. Batch tests were also conducted using water samples collected from a Taiwanese drinking water distribution system. The bacterial regrowth potentials of the blank were equal to 4.3 × 103, 1.5 × 104, 4.9 × 104 and 7.5 × 104 c.f.u. ml−1 for water samples collected from treatment plant effluent, commercial area, mixed area, and residential area, respectively. These results showed that the biological stability of drinking water is the highest in treatment plant effluent, followed by distributed water of the commercial area, distributed water of the mixed area, and then the distributed water of residential area.  相似文献   

10.
Aims: To assess the concentration of atrazine in Lake Oconee and develop a qPCR assay as a potential marker for the presence of atrazine‐degrading bacteria indicating atrazine contamination. Methods and Results: Water and sediment samples were collected from the Oconee Lake at four golf course sites, two residential sites, one cattle farming site and a forested site. Atrazine concentration at the study sites was determined using an ELISA kit and indicated the presence of atrazine from 0·72 ppb at the forested sites to 1·84 ppb at the golf course sites. QPCR results indicate the presence of atzA gene (atrazine chlorohydrolase) from 1·51 × 102 gene copies at the residential sites to 3·31 × 105 gene copies per 100 ml of water at the golf course regions of the lake and correlated (r = 0·64) with atrazine concentration. Sediment samples had higher atzA gene copies compared with the water samples (P < 0·05). Conclusions: Atrazine concentration and the highest quantity of atzA gene were detected in the golf course regions of the lake. Overall, atrazine concentration monitored in Lake Oconee was below the Environment Protection Agency (EPA) regulatory standards. Significance and Impact of the Study: Quantitative PCR is an efficient technique for assessing the presence of atrazine catabolism gene as a functional marker for atrazine‐degrading bacteria and the presence of atrazine contamination.  相似文献   

11.
Aims: To investigate the prevalence of culturable and nonculturable Legionella species in hot water systems of public buildings in Japan and assess the risk factors associated with Legionella contamination in hot water systems. Methods and Results: Legionella species were detected by conventional culture and molecular methods in 130 water samples collected from 40 buildings. A total of 26 (20·0%) water samples from 17 (42·5%) buildings were positive by culture, qualitative PCR or both methods: Legionella pneumophila and Leg. anisa were detected in four samples by a culture method, whereas 23 samples were positive by qualitative PCR, with the presence of various Legionella species confirmed by sequencing. Of these 23 samples, bacterial counts were quantifiable in 21 by real‐time PCR (from 1·7 × 105 to 2·6 × 1011 cells per litre). Phylogenetic analysis of amplified partial 16S rRNA gene showed close relations to various species of Legionella, including Leg. anisa and Leg. micdadei, all of which have been associated with respiratory diseases or increased antibody titres in human sera. Assessment of risk factors showed that turbidity, free chlorine concentration, iron concentration and heterotrophic plate count (HPC) were significantly associated with Legionella contamination (P < 0·05). Conclusions: Contamination of hot water systems of public buildings with culturable and nonculturable Legionella species may be a potential risk factor for Legionella infection in Japan. Adequate levels of chlorine, low levels of iron and HPC are important maintenance measures in the reduction of Legionella contamination in hot water systems. Significance and Impact of the Study: More than 40% of hot water systems in the Japanese public buildings examined were contaminated by not only culturable Leg. pneumophila and Leg. anisa but also by nonculturable pathogenic species. To our knowledge, this is the first report of both culturable and nonculturable Legionella contamination in hot water systems of public buildings in Japan.  相似文献   

12.
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.  相似文献   

13.
Aims: The prevalence of enteric viruses in drinking and river water samples collected from Pune, India was assessed. During an outbreak of HEV in a small town near pune, water samples were screened for enteric viruses. Methods and Results: The water samples were subjected to adsorption–elution‐based virus concentration protocol followed by multiplex nested PCR. Among 64 Mutha river samples, 49 (76·56%) were positive for Hepatitis A Virus, 36 (56·25%) were positive for Rotavirus, 33 (51·56%) were positive for Enterovirus and 16 (25%) were positive for Hepatitis E Virus RNA. Only enterovirus RNA was detected in 2/662 (0·3%) drinking water samples, and the samples from the city’s water reservoir tested negative for all four viruses. HEV RNA was detected in three out of four river water samples during HEV outbreak and partial sequences from patients and water sample were identical. Conclusions: The study suggests absence of enteric viruses both in the source and in the purified water samples from Pune city, not allowing evaluation of the purification system and documents high prevalence of enteric viruses in river water, posing threat to the community. Significance and Impact of the Study: The rapid, sensitive and relatively inexpensive protocol developed for virological evaluation of water seems extremely useful and should be adapted for evaluating viral contamination of water for human consumption. This will lead to development of adequate control measures thereby reducing disease burden because of enteric viruses.  相似文献   

14.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

15.
Soil water transported via the petiole is a primary rehydration pathway for leaves of water‐stressed plants. Leaves may also rehydrate by absorbing water via their epidermal surfaces. The mechanisms and physiological relevance of this water pathway, however, remain unclear, as the associated hydraulic properties are unknown. To gain insight into the foliar water absorption process, we compared rehydration kinetics via the petiole and surface of Prunus dulcis and Quercus lobata leaves. Petiole rehydration could be described by a double exponential function suggesting that 2 partly isolated water pools exist in leaves of both species. Surface rehydration could be described by a logistic function, suggesting that leaves behave as a single water pool. Whereas full leaf rehydration via the petiole required approximately 20 min, it took over 150 and 300 min via the surface of P. dulcis and Q. lobata , respectively. Such differences were attributed to the high resistance imposed by the leaf surface and especially the cuticle. The minimum resistance to surface rehydration was estimated to be 6.6 × 102 (P. dulcis ) and 2.6 × 103 MPa·m2·s·g?1 (Q. lobata ), which is remarkably higher than estimated for petiole rehydration. These results are discussed in a physiological context.  相似文献   

16.
17.
Aims: To determine the prevalence of Campylobacter in surface waters of a highly populated Mediterranean area. Methods and Results: Surface water and wastewater samples were collected from an area in the north‐east of Spain during a 2‐year study. All the samples were analysed using the MPN method and Multiplex PCR to quantify and identify Campylobacter. It was detected in 82% of the samples from the Llobregat River with a mean of 1·3 MPN 100 ml?1. The lowest counts were obtained in summer. Campylobacter coli was the predominant species in this river. The bacteria were isolated from marsh water but not from seawater samples. The highest counts of campylobacters were found in poultry wastewater where Camp. jejuni was the predominant species, as in urban sewage. In pig slurry, Camp. coli was the only species detected. Conclusions: Campylobacter jejuni and Camp. coli are present and widely distributed in the surface water of the studied area. The two species co‐exist, with Camp. coli being predominant. In river water, campylobacter counts presented a seasonal distribution. No relationship with faecal indicators was found. Significance and Impact of the Study: This study provides the first data on the occurrence and concentrations of thermotolerant campylobacter species in surface water in a Mediterranean area.  相似文献   

18.
Aims: Escherichia coli is the pre‐eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource‐limited settings, however. We evaluate here the use of ambient‐temperature incubation in detection of E. coli in drinking water samples as a potential cost‐saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures. Methods and Results: This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm? (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk‐based microbial count strata (E. coli CFU 100 ml?1 counts of <1, 1–10, 11–100, 101–1000, >1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods. Conclusions: These results suggest that ambient‐temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited. Significance and Impact of the Study: Ambient‐temperature incubation of E. coli may be a promising option for reducing the complexity and costs associated with water safety monitoring for faecal indicator bacteria such as E. coli in a field context in resource‐limited settings, as are often encountered in developing countries and after disasters.  相似文献   

19.
Three hundred and thirty‐nine water samples obtained from 90 locations in Korea from 2007 to 2011 were tested for the presence of enteric viruses (EV), total coliforms (TC), and fecal coliforms (FC). A total culturable virus assay revealed that 89 samples (26.3%) were positive for EVs, the average concentration being 5.8 most probable number (MPN)/100 L. The Han river basin exhibited the highest contamination by EVs (occurrence, 41.3%; average concentration, 24.0 MPN/100 L). EV contamination was found more frequently in river water (occurrence, 33.6%; concentration, 8.4 MPN/100 L) than in lake water or groundwater. The concentration of EVs was highest in spring (7.7 MPN/100 L), whereas it was found most frequently in winter (36.1%). The number of TCs ranged from 0 – 1.2 × 105 colony forming units (CFU)/100 mL and that of FCs from 0–6.2 × 103 CFU/100 mL per sample. Statistical analyses showed that the presence of EVs, TCs and FCs did not correlate significantly with temperature or turbidity. In addition, presence of TCs and FCs was not significantly correlated with presence of EVs. In conclusion, TCs and FCs may not be accurate microbial indicators of waterborne EVs in Korean aquatic environments.  相似文献   

20.
Pollution of rivers caused by human activity is a widely discussed problem, however there is not much attention paid to the changes of water quality that result from the inflow of effluent discharged from fish breeding ponds. The paper presents results of studies on changes of the abiotic parameters (hydrochemical and hydrological) of water observed in the yearly cycle between 2004 and 2008 in selected rivers of Northwest Poland. It was proved that the fastest reaction on the inflow of the effluent discharged from the fish ponds was reflected in changes of biogenic and organic compounds in the river water. The largest, i.e. threefold (rivers Krapiel and Tywa) or even fourfold (rivers Rurzyca and Stepnica) increase in nutrients and organic matter was recorded during the pond effluent discharge into the rivers. At that time values of the organic matter ranged from 8.9 to 18.3 mgO2/dm3 (BOD5), the nitrogen compounds from 16.868 to 26.930 mgN/dm3, while the phosphorus from 1.928 to 6.353 mgP/dm3. Interestingly, an additional dry mass of seston was recorded no earlier than the activity of the harmful element had been stopped and the river had resumed to the “initial” state (i.e. before the effluent discharge); that period varied from one to two months, depending on the river characteristics. The highest values of the dry seston mass (580.9 mg/dm3) was recorded in river Krapiel in November 2006. It seems that in spite of remarkable influence on values of individual physical and chemical indices of the river water quality, the effluent discharge from the fish ponds is not a factor hampering the self-purification processes of the rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号