首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is mounting evidence that, across taxa, females breeding in competitive environments tend to allocate more testosterone to their offspring prenatally and these offspring typically have more aggressive and faster‐growing phenotypes. To date, no study has determined the mechanisms mediating this maternal effect's influence on offspring phenotype. However, levels of estrogen receptor alpha (ERα) gene expression are linked to differences in early growth and aggression; thus, maternal hormones may alter gene regulation, perhaps via DNA methylation, of ERα in offspring during prenatal development. We performed a pilot study to examine natural variation in testosterone allocation to offspring through egg yolks in wild Eastern Bluebirds (Sialia sialis) in varying breeding densities and percent DNA methylation of CG dinucleotides in the ERα promoter in offspring brain regions associated with growth and behavior. We hypothesized that breeding density would be positively correlated with yolk testosterone, and prenatal exposure to maternal‐derived yolk testosterone would be associated with greater offspring growth and decreased ERα promoter methylation. Yolk testosterone concentration was positively correlated with breeding density, nestling growth rate, and percent DNA methylation of one out of five investigated CpG sites (site 3) in the diencephalon ERα promoter, but none in the telencephalon (n = 10). Percent DNA methylation of diencephalon CpG site 3 was positively correlated with growth rate. These data suggest a possible role for epigenetics in mediating the effects of the maternal environment on offspring phenotype. Experimentally examining this mechanism with a larger sample size in future studies may help elucidate a prominent way in which animals respond to their environment. Further, by determining the mechanisms that mediate maternal effects, we can begin to understand the potential for the heritability of these mechanisms and the impact that maternal effects are capable of producing at an evolutionary scale.  相似文献   

2.
In oviparous vertebrates, maternal steroid allocation to eggs can have important fitness consequences for the offspring. However, elevated testosterone levels are not only associated with beneficial postnatal effects, such as enhanced growth and high social status, but may also entail costs by suppressing the immune system. In this study, testosterone levels in eggs of Chinese painted quail (Coturnix chinensis) were experimentally manipulated to evaluate its effects on growth and immunocompetence. Testosterone did not affect embryonic development, body size or growth during the first 20 days. However, elevated testosterone levels during embryonic development were immunosuppressive for chicks with inherently higher growth rate. Adaptive scenarios where only beneficial effects of increased testosterone levels are considered may therefore need to be re-evaluated.  相似文献   

3.
During egg formation, female birds deposit antibodies against parasites and pathogens they were exposed to before egg laying into the yolk. In captive bird species, it has been shown that these maternal immunoglobulins (maternal yolk IgGs) can protect newly hatched offspring against infection. However, direct evidence for such benefits in wild birds is hitherto lacking. We investigated (1) if nestling Great Tits Parus major originating from eggs with naturally high levels of maternal yolk IgG are less susceptible to a common, nest-based ectoparasite, (2) if maternal yolk IgGs influence nestling development and in particular, their own immune defence, and (3) if there is a negative correlation between levels of maternal yolk IgG in host eggs and the reproductive success of ectoparasitic fleas feeding on the nestlings. Counter to expectations, we found no indication that maternally transferred yolk IgGs have direct beneficial effects on nestling development, nestling immune response or nestling resistance or tolerance to fleas. Furthermore, we found no negative correlation between host yolk IgG levels and parasite fecundity. Thus, whereas previous work has unequivocally shown that prenatal maternal effects play a crucial role in shaping the parasite resistance of nestling birds, our study indicates that other egg components, such as hormones, carotenoids or other immuno-active substances, which bird females can adjust more quickly than yolk IgG, might mediate these effects.  相似文献   

4.
Maternal hormones can be transferred to offspring during prenatal development in response to the maternal social environment, and may adaptively alter offspring phenotype. For example, numerous avian studies show that aggressive competition with conspecifics tends to result in females allocating more testosterone to their egg yolks, and this may cause offspring to have more competitive phenotypes. However, deviations from this pattern of maternal testosterone allocation are found, largely in studies of colonial species, and have yet to be explained. Colonial species may have different life‐history constraints causing different yolk testosterone allocation strategies in response to conspecific competition, but few studies have experimentally tested whether colonial species do indeed differ from that of solitary species. To test this, we collected eggs from zebra finches Taeniopygia guttata, a colonial species, in the presence and absence of conspecific intrusions. Females did not alter the concentration of testosterone deposited in eggs laid during intrusions despite becoming more aggressive. These results suggest that maternal effects are not characterized by a uniform response to the social environment, but rather need to be contextualized with life‐history traits.  相似文献   

5.
Maternal yolk hormones in bird eggs are thought to adjust the offspring to the post-hatching environment. This implies that the effects of maternal yolk hormones should vary with the post-hatching environment, but to date such context-dependency has largely been ignored. We experimentally increased yolk testosterone concentrations in canary eggs and simultaneously manipulated the post-hatching context via an experimental tick-infestation of the chicks. This allows us to evaluate the context-dependency of hormone-mediated maternal effects, as it has previously been shown that ectoparasites alter the maternal yolk androgen deposition. The experimental tick infestation reduced growth in chicks from sham-treated eggs, indicating harmful effects of this ectoparasite in canaries. Chicks from testosterone-treated eggs were not affected in their development by ticks, suggesting lower ectoparasite vulnerability. But this may also be due to the fact that experimentally elevated yolk testosterone levels impaired growth even under parasite-free conditions. This contrasts previous studies, but these studies often manipulated first laid eggs, while we used eggs of subsequent laying positions. Later laid eggs are presumably of lower quality and contain higher yolk testosterone concentrations. Thus, the effects of elevated yolk testosterone on growth may be dose-dependent or vary with the egg quality, suggesting prenatal context-dependency.  相似文献   

6.
Yolk androgens reduce offspring survival   总被引:33,自引:0,他引:33  
Females may favour some offspring over others by differential deposition of yolk hormones. In American kestrels (Falco sparverius), we found that yolks of eggs laid late in the sequence of a clutch had more testosterone (T) and androstenedione (A4) than yolks of first-laid eggs. To investigate the effects of these yolk androgens on nestling 'fitness', we injected both T and A4 into the yolks of first-laid eggs and compared their hatching time, nestling growth and nestling survival with those of first-laid eggs in which we injected vehicle as a control. Compared to controls, injection of T and A4 at a dose intended to increase their levels to those of later-laid eggs delayed hatching and reduced nestling growth and survival rates. Yolk androgen treatment of egg 1 had no effect on survival of siblings hatching from subsequently laid eggs. The adverse actions of yolk androgen treatment in the kestrel are in contrast to the favourable actions of yolk T treatment found previously in canaries (Serinus canaria). Additional studies are necessary in order to determine whether the deposition of yolk androgens is an adaptive form of parental favouritism or an adverse by-product of endocrine processes during egg formation. Despite its adaptive significance, such 'transgenerational' effects of steroid hormones may have helped to evolutionarily shape the hormonal mechanisms regulating reproduction.  相似文献   

7.
Avian eggs contain considerable amounts of maternal yolk androgens, which have been shown to beneficially influence the physiology and behaviour of the chick. As androgens may suppress immune functions, they may also entail costs for the chick. This is particularly relevant for colonial species, such as the black-headed gull (Larus ridibundus), in which the aggregation of large numbers of birds during the breeding season enhances the risk of infectious diseases for the hatching chick.To test the effect of maternal yolk androgens on the chick's immune function, we experimentally manipulated, in a field study, yolk androgen levels within the physiological range by in ovo injection of either androgens (testosterone and androstenedione) or sesame oil (control) into freshly laid eggs. We determined cell-mediated immunity (CMI) and humoral immunity of the chicks at the beginning of the nestling period to evaluate early modulatory effects of yolk androgens on immune function.Embryonic exposure to elevated levels of androgens negatively affected both CMI and humoral immunity in nestling gull chicks. Consequently, maternal yolk androgens not only entail benefits of enhanced competitiveness and growth as previously shown, but also costs in terms of immunosuppression. The outcome of embryonic yolk androgen exposure thus likely depends on the post-hatching circumstances for the developing offspring such as parasite exposure and degree of sibling competition.  相似文献   

8.
Despite a vast literature on the factors controlling adult size, few studies have investigated how maternal size affects offspring size independent of direct genetic effects, thereby separating prenatal from postnatal influences. I used a novel experimental design that combined a cross-fostering approach with phenotypic manipulation of maternal body size that allowed me to disentangle prenatal and postnatal maternal effects. Using the burying beetle Nicrophorus vespilloides as model organism, I found that a mother''s body size affected egg size as well as the quality of postnatal maternal care, with larger mothers producing larger eggs and raising larger offspring than smaller females. However, with respect to the relative importance of prenatal and postnatal maternal effects on offspring growth, only the postnatal effects were important in determining offspring body size. Thus, prenatal effects can be offset by the quality of postnatal maternal care. This finding has implications for the coevolution of prenatal and postnatal maternal effects as they arise as a consequence of maternal body size. In general, my study provides evidence that there can be transgenerational phenotypic plasticity, with maternal size determining offspring size leading to a resemblance between mothers and their offspring above and beyond any direct genetic effects.  相似文献   

9.
The avian egg contains maternal hormones that affect behavior, growth, morphology, and offspring survival. Evidence to date suggests that patterns of yolk androgen deposition could provide females with a means to manipulate sibling competition and, thereby, increase their fitness. We examined yolk testosterone (T) concentrations in eggs of the smooth-billed ani (Crotophaga ani) to understand patterns of androgen deposition in eggs of this plural-breeding joint-nesting cooperatively breeding species. We tested the hatching asynchrony adjustment hypothesis, which states that increases in yolk androgen levels over the laying sequence function to mitigate the disadvantage of being a later-hatched chick in species without adaptive brood reduction. We also investigated the effect of group size on yolk T deposition to test the hypothesis that females in multi-female groups could give a competitive edge to their own chicks by depositing higher T levels in their eggs. Predictions of the hatching asynchrony adjustment hypothesis were supported in both single- and multi-female groups as yolk testosterone levels increased from early- to late-laid eggs. This suggests that ani females can influence nestling competition and chick survival by within-clutch differential T allocation. Unexpectedly, we did not observe an effect of group size on yolk T deposition. Yolk testosterone concentrations may not be a mere reflection of a female's hormonal status as female plasma circulating levels of T did not vary in the same direction as yolk T levels. Results of this study therefore support the idea that females may adaptively manipulate chick behavior through hormonal deposition in eggs.  相似文献   

10.
Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes.  相似文献   

11.
Female birds may adjust their offspring phenotype to the specific requirements of the environment by differential allocation of physiologically active substances into yolks, such as androgens. Yolk androgens have been shown to accelerate embryonic development, growth rate and competitive ability of nestlings, but they can also entail immunological costs. The balance between costs and benefits of androgen allocation is expected to depend on nestling environment. We tested this hypothesis in a multibrooded passerine, the spotless starling, Sturnus unicolor. We experimentally manipulated yolk androgen levels using a between‐brood design and evaluated its effects on nestling development, survival and immune function. Both in first and replacement broods, the embryonic development period was shorter for androgen‐treated chicks than controls, but there were no differences in second broods. In replacement broods, androgen‐treated chicks were heavier and larger than those hatched from control eggs, but this effect was not observed in the other breeding attempts. Androgen exposure reduced survival with respect to controls only in second broods. Regarding immune function, we detected nonsignificant trends for androgen treatment to activate two important components of innate and adaptive immunity (IL‐6 and Ig‐A levels, respectively). Similarly, androgen‐treated chicks showed greater lymphocyte proliferation than controls in the first brood and an opposite trend in the second brood. Our results indicate that yolk androgen effects on nestling development and immunity depend on the environmental conditions of each breeding attempt. Variation in maternal androgen allocation to eggs could be explained as the result of context‐dependent optimal strategies to maximize offspring fitness.  相似文献   

12.
Nestling birds solicit food from their parents with vigorous begging displays, involving posturing, jostling and calling. In some species, such as canaries, begging is especially costly because it causes a trade off against nestling growth. Fitness costs of begging like this are predicted by evolutionary theory because they function to resolve conflicts of interest within the family over the provision of parental investment. However, the mechanism that links these costs with nestling behaviour remains unclear. In the present study, we determine if the relationships between nestling androgen levels, nestling begging intensities and nestling growth rates are consistent with the hypothesis that testosterone is responsible for the trade-off between begging and growth. We test this idea with a correlational study, using fecal androgens as a non-invasive method for assaying nestling androgen levels. Our results show that fecal androgen levels are positively correlated with nestling begging intensity, and reveal marked family differences in each trait. Furthermore, changes in fecal androgen levels between 5 and 8 days after hatching are positively associated with changes in nestling begging intensity, and negatively associated with nestling growth during this time. Although these correlational results support our predictions, we suggest that that experimental manipulations are now required to test the direct or indirect role of testosterone in mediating the trade-off between begging and growth.  相似文献   

13.
The evolutionary importance of maternal effects is determined by the interplay of maternal adaptations and strategies, offspring susceptibility to these strategies, and the similarity of selection pressures between the two generations. Interaction among these components, especially in species where males and females differ in the costs and requirements of growth, limits inference about the evolution of maternal strategies from their expression in the offspring phenotype alone. As an alternative approach, we examine divergence in the proximate mechanisms underlying maternal effects across three house finch populations with contrasting patterns of sex allocation: an ancestral population that shows no sex-biased ovulation, and two recently established populations at the northern and southern boundaries of the species range that have opposite sequences of ovulation of male and female eggs. For each population, we examined how oocyte acquisition of hormones, carotenoids and vitamins was affected by oocyte growth and overlap with the same and opposite sexes. Our results suggest that sex-specific acquisition of maternal resources and sex determination of oocytes are linked in this system. We report that acquisition of testosterone by oocytes that become males was not related to growth duration, but instead covaried with temporal exposure to steroids and overlap with other male oocytes. In female oocytes, testosterone acquisition increased with the duration of growth and overlap with male oocytes, but decreased with overlap with female oocytes. By contrast, acquisition of carotenoids and vitamins was mostly determined by organism-wide partitioning among oocytes and oocyte-specific patterns of testosterone accumulation, and these effects did not differ between the sexes. These results provide important insights into three unresolved phenomena in the evolution of maternal effects - (i) the evolution of sex-specific maternal allocation in species with simultaneously developing neonates of both sexes; (ii) the link between sex determination and sex-specific acquisition of maternal products; and (iii) the evolution of context-dependent modulation of maternal effects.  相似文献   

14.
Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., “glucocorticoid‐mediated maternal effects”) have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta‐analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid‐mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.  相似文献   

15.
Resting metabolic rate is a common way of quantifying the cost of living in endothermic animals. The trait often makes up a substantial part of an animal's energy budget and can also be related to sustainable peak work rate as well as to daily energy expenditure. Studies have shown that metabolic rates are often heritable, but much of the variation seems to be caused by other factors (e.g., environmental and maternal effects). In a previous study, in ovo exposure to increased levels of testosterone induced metabolic costs early in life. It is, however, unknown whether in ovo androgens also have long-term effects on individual metabolic rates. In this study, we show that experimentally increased levels of in ovo testosterone in zebra finches (Taeniopygia guttata) result in a 7% higher resting metabolic rate when they are adults. This shows that maternally transferred hormones can induce long-term effects on metabolic demands and potentially influence variation in life-history strategies among offspring. Variation in maternal hormone transfer may also explain some of the large interindividual variation observed in metabolic rates.  相似文献   

16.
Maternally derived traits, such as within-clutch variation inthe amount of testosterone deposited in egg yolks, may haveprofound effects on offspring fitness. Offspring with elevatedlevels of testosterone may benefit from increased competitiveability through effects on aggression and growth rate. However,elevated levels of testosterone are also associated with costsof increased peroxidative damage from free radicals and consequentoxidative stress. Diet-derived antioxidants, such as vitaminE and various carotenoids, provide protection against the deleteriouseffects of oxidative stress. Here we show that within-clutchvariation in yolk testosterone is the opposite to that of yolkantioxidant concentration in the lesser black-backed gull Larusfuscus. We provide evidence that suggests that these two direct maternal effects are, in fact, complementary and, in conjunctionwith an indirect maternal effect (the onset of incubation),may provide an adaptive mechanism for parental favoritism inresponse to environmental variability. The potential implicationsof these findings with respect to previous investigations onvariation in yolk testosterone concentrations and on the understandingof intrafamilial dynamics are discussed.  相似文献   

17.
Maternal effects increase phenotypic plasticity in offspring traits and may therefore facilitate adaptation to environmental variability. Carotenoids have been hypothesized to mediate costs of reproduction in females as well as maternal effects. However, assessing potential transgenerational and population consequences of environmental availability of carotenoids requires a better understanding of mechanisms of maternal effects mediated by these antioxidant pigments. Manipulating dietary availability of carotenoids to egg-laying female blue tits and subsequently cross-fostering nestlings between female treatments allowed us to specifically investigate the relative importance of maternal effects through egg carotenoids and through post-hatching care mediated by antioxidants in females. Nestling body size and mass and plasma antioxidants were not significantly affected by pre- or post-hatching maternal effects mediated by antioxidants, although both types of maternal effects in interaction explained the variation in growth, as measured by wing length. Development of the ability to mount a cell-mediated immune response as well as its temporal dynamics was influenced by both pre- and post-hatching maternal effects, with an advantage to nestlings originating from, or reared by, carotenoid-supplemented females. In addition, nestlings reared by carotenoid-fed females had a lower blood sedimentation rate, indicating that they may have been less infected than nestlings from controls. Finally, prehatching maternal effects in interaction with nestling plasma carotenoid levels affected the development of carotenoid-based plumage. Maternal effects mediated by carotenoids may thus act as a proximate factor in development and phenotypic plasticity in traits associated with nestling fitness, such as immune response and ability to metabolize and use antioxidants, and ultimately participate in the evolution of phenotypic traits.  相似文献   

18.
The solicitation behaviours performed by dependent young are under selection from the environment created by their parents, as well as wider ecological conditions. Here we show how mechanisms acting before hatching enable canary offspring to adapt their begging behaviour to a variable post-hatching world. Cross-fostering experiments revealed that canary nestling begging intensity is positively correlated with the provisioning level of their own parents (to foster chicks). When we experimentally increased food quality before and during egg laying, mothers showed higher faecal androgen levels and so did their nestlings, even when they were cross-fostered before hatching to be reared by foster mothers that had been exposed to a standard regime of food quality. Higher parental androgen levels were correlated with greater levels of post-hatching parental provisioning and (we have previously shown) increased faecal androgens in chicks were associated with greater begging intensity. We conclude that androgens mediate environmentally induced plasticity in the expression of both parental and offspring traits, which remain correlated as a result of prenatal effects, probably acting within the egg. Offspring can thus adapt their begging intensity to variable family and ecological environments.  相似文献   

19.
Yolk androgens affect offspring hatching, begging, growth and survival in many bird species. If these effects are sex-specific, yolk androgen deposition may constitute a mechanism for differential investment in male and female offspring. We tested this hypothesis in zebra finches. In this species, females increase yolk-testosterone levels and produce male-biased sex ratios when paired to more attractive males. We therefore predicted that especially sons benefit from elevated yolk androgens. Eggs were injected with testosterone or sesame oil (controls) after 2 days of incubation. Testosterone had no clear effect on sex-specific embryonic mortality and changed the pattern of early nestling mortality independent of offspring sex. Testosterone-treated eggs took longer to hatch than control eggs. Control males begged significantly longer than females during the first days after hatching and grew significantly faster. These sex differences were reduced in offspring from testosterone-treated eggs due to prolonged begging durations of daughters, enhanced growth of daughters and reduced growth of sons. The results show that variation in maternal testosterone can play an important role in avian sex allocation due to its sex-specific effects on offspring begging and growth.  相似文献   

20.
High levels of testosterone can benefit individual fitness, for example by increasing growth rate or ornament size, which may result in increased reproductive success. However, testosterone induces costs, such as a suppressed immune system, thereby generating trade-offs between growth or mate acquisition, and immunity. In birds and reptiles, females allocate steroids to their eggs, which may be a mechanism whereby females can influence the phenotype of their offspring. To our knowledge, only the benefits of early androgen exposure have been experimentally investigated to date. However, to understand this phenomenon, the costs also need to be evaluated. We manipulated testosterone levels in eggs of the viviparous common lizard and monitored growth, endurance and post-parturient responses to ectoparasites of the offspring. Testosterone-treated individuals had significantly higher growth rates than controls, but suffered a significant decrease in growth rate when exposed to ticks, whereas the corresponding difference for controls was non-significant. There was no difference in observed parasite load or leucocyte count between manipulated and control offspring. Thus, our results suggest that high testosterone levels during embryonic development have detrimental effects on immune function resulting in reduced growth rate, and that this must be taken into consideration when evaluating the potential adaptive value of maternal androgen allocation to eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号