共查询到20条相似文献,搜索用时 0 毫秒
1.
This study considers the cycling of nitrogen in the waters of the North Sea, particularly focussing on organic nitrogen. Dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and particulate organic nitrogen (PON) were measured in the North Sea over a one-year period (autumn 2004–summer 2005). The surface water concentrations of nitrate, ammonium, DON and PON during the present study ranged from <0.1–7.2 μM, <0.1–2.0 μM, 1.9–11.2 μM and 0.3–5.6 μM, respectively, with DON the dominant fraction of total nitrogen at all times. These nutrients concentrations were significantly lower compared to previous studies in the southern North Sea. The seasonal variations showed high mean surface concentrations of nitrate (4.7 ± 0.6 μM) and DON (8.9 ± 0.9 μM), low ammonium (<0.1 μM) and PON (0.8 ± 0.1 μM) in winter, shifting to low nitrate (0.3 ± 0.3 μM) and DON (4.2 ± 1.2 μM) in summer, with high ammonium (0.8 ± 0.4 μM) in autumn and PON (2.5 ± 1.2 μM) in spring. Highest mean surface DON concentration was measured in winter and may be due to resuspension of the organic matter from the bottom sediments. For autumn and spring, phytoplankton DON release was likely to be the most significant source of DON as shown by high concentrations of low molecular weight (LMW) DON and its positive correlation to chlorophyll a. Low total and LMW DON concentrations during summer were likely to be due to the uptake of the LMW DON fraction by phytoplankton and bacteria and the stratification of the water column. DON is therefore shown to be a potentially important source of nitrogen in shelf seas especially after the spring bloom has depleted nitrate to limiting concentrations. Handling editor: L. Naselli-Flores 相似文献
2.
M. V. Ivanov A. Yu. Lein Yu. M. Miller S. K. Yusupov N. V. Pimenov B. Wehrli I. I. Rusanov A. Zehnder 《Microbiology》2000,69(4):449-459
The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss
expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched
with the12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved
oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed
isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters
below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms;
this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature
allows an inference to be made about the considerable seasonable variability of the POC δ13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter. 相似文献
3.
Dynamics of dissolved organic carbon concentration (DOC) and capacity toabsorb light (color) are determined by in-lake and external properties andprocesses. In this study, the influence of external factors such as rainfallandsolar radiation on DOC and color dynamics was assessed for a small forestedlake. DOC and absorption coefficients at 440 nm (a440)ranged 4-fold from 0.46 to 1.62 mM and from 3.4 to 14.8m–1, respectively. DOC and a440 variedsynchronously, but an important percentage of the variability (26%) ina440 was not explained by DOC. The resulting twofold variation inthemolar absorption coefficient of DOC suggested significant seasonal changes inchromophoric content. Both DOC and a440 were positive andsignificantly related to cumulative rainfall. Solar radiation, however, onlyappeared to influence a440 dynamics. This influence was mediated byphotobleaching. Photobleaching coefficients (kb) were higher in falland spring relative to the summer. This seasonal variability in kbvalues was related to monthly rainfall. The influence of photobleaching ona440 dynamics was evaluated by comparing the half life ofa440 in the water column with water residence time (WRT). For thestudy lake, photobleaching contributed notably to a440 dynamicsduring the dry periods when WRT was longer than the a440 half life .DOC dynamics, however, were not related to solar radiation becausephotomineralization was considerably slower than photobleaching. 相似文献
4.
The particulate organic carbon (POC), nitrogen (PN) and phosphorus (PP) vertical distribution along the water column and temporal variability in coastal and offshore waters of the Northern Adriatic Sea were related to the hydrodynamic conditions and biological processes. Fresh water inputs from the Po and Adige rivers enhance primary production, resulting in high POC, PN and PP concentrations at the surface. In offshore waters, POC and PN concentrations were about 3–4 times less than in the coastal waters, while PP were up to 10 times lower, highlighting a marked phosphorus depletion. In the bottom layer, the POC content decreases due to the strong density gradients which separate bottom waters with prevailing degradation processes. Short term 48 h-variability of POC, PN and PP in the coastal waters was determined to a great extent by variations in the spreading of river plumes at the surface and by nepheloid layers and resuspension processes in the bottom waters. The particulate matter in the Adriatic offshore waters is extremely depleted as regards particulate phosphorus and is characterised by Corg:P and N:P ratios higher than the Redfield ratio. 相似文献
5.
Bacterial biomass on four different size fractions of benthic fine particulate organic matter (FPOM) was measured throughout a year in a woodland stream in Hokkaido, Japan. Bacterial biomass per ash free dry mass (AFDM) of the FPOM was significantly different among the four size fractions, while the biomass per unit surface area of FPOM was not. Annual mean of bacterial biomass per particle mass positively correlated to the surface area per mass in the four size fractions. In addition, negative correlation was found between the C:N ratio and bacterial biomass per AFDM in FPOM when all fractions were pooled. There was also negative correlation between C:N ratio and the surface area per particle mass in the four size fractions. The difference of bacterial biomass on FPOM among the size fractions could be ascribed to surface area and/or C:N ratio of FPOM, although these effects were not separately evaluated in the present study. 相似文献
6.
Chemical and seasonal controls on the dynamics of dissolved organic matter in a coniferous old-growth stand in the Pacific Northwest,USA 总被引:1,自引:0,他引:1
Soil organic matter (SOM) is the largest terrestrial C pool, and retention and release of dissolved organic matter (DOM) cause formation and loss of SOM. However, we lack information on how different sources of DOM affect its chemical composition, and how DOM chemical composition affects retention. We studied seasonal controls on DOM production and chemical controls on retention in soils of a temperate coniferous forest. The O horizon was not usually the dominant source for dissolved organic C (DOC) or N (DON) as has been reported for other sites. Rather, net production of both DOC and DON was often greater in the shallow mineral soil (0–10 cm) than in the O horizon. DOM production in the shallow mineral soil may be from root exudation as well as turnover of fine roots and microflora in the rhizosphere. In the field, the two acid fractions (hydrophobic and hydrophilic acids) dominated the soil solution at all depths. A major portion of net production and removal of total DOC within the soil column was explained by increases and decreases in these fractions, although a shift in chemical composition of DOM between the O and mineral soil horizons suggested different origins of DOM in these layers. A larger loss of the free amino fraction to deep soil water at this study site than at other sites suggested lower retention of labile DON. Field DOM removal measurements suggest that field-measured parameters may provide a good estimate for total DOM retained in mineral soil. 相似文献
7.
Variability and transport of suspended sediment,particulate and dissolved organic carbon in the tidal freshwater Hudson River 总被引:2,自引:0,他引:2
Measurements of suspended matter, particulate organic carbon and dissolved organic carbon were made over a three year period at stations spanning 150 km of the tidal freshwater Hudson River. Suspended matter concentrations varied from year-to-year and were not related to freshwater discharge. The increase in suspended matter with depth in vertical profiles suggests that, during medium to low flow conditions, resuspension of bottom sediments was as important a source of sediment as loadings from tributaries. Particulate organic carbon showed significant variability among stations, and both autochthonous primary production and detrital organic matter are contributing to POC standing stocks. Dissolved organic carbon represented over half of the total organic carbon in the water column and showed little variation among stations.Examining downstream changes in transport showed that there was significant production of both suspended matter and POC within the study reach during the ice-free season. Tributary loadings within the study reach do not appear to be the cause of these increases in downstream transport. Dissolved organic carbon behaved conservatively in that there was no evidence for net production or net consumption within the river.The spatial/temporal patterns and analyses of transport suggest that suspended matter and POC, but not DOC, were controlled to a significant extent by processes occurring within the river and were not simply related to loadings from outside. 相似文献
8.
Dynamics of dissolved and particulate organic carbon in a saline and semiarid stream of southeast Spain (Chicamo stream) 总被引:1,自引:1,他引:1
Vidal-Abarca M. R. Suárez M. L. Guerrero C. Velasco J. Moreno J. L. Millán A. Perán A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability. 相似文献
9.
Distribution of dissolved organic carbon and dissolved fulvic acid in mesotrophic Lake Biwa, Japan 总被引:1,自引:0,他引:1
The dissolved organic carbon (DOC) concentrations in mesotrophic Lake Biwa were determined by a total organic carbon (TOC)
analyzer, and DOC molecular size distributions were determined by size exclusion chromatography (SEC) using a fluorescence
detector at excitation/emission (Ex/Em) levels of 300/425 nm with the eluent at pH 9.7. The fluorescence wavelengths for detection
were chosen from the result of excitation–emission matrix spectrometry (EEM) analysis for dissolved fulvic acid (DFA) extracted
from Ado River (peak A, Ex/Em = 260–270/430–440 nm; peak B, Ex/Em = 300–310/420–430 nm). Ado River DFA was eluted with a retention
time (RT) of 7.4–8.9 min and the apparent molecular weight was estimated at 22–87 kDa based on the elution curve for the spherical
protein molecular weight standard. A DFA peak eluted at the same retention time as Ado River DFA also appeared in all the
samples of Lake Biwa water. From the linear relationship between the peak areas with an RT of 7.4–8.9 min by SEC analysis
and DOC values of DFA by TOC analysis of a series of DFA samples (r2 = 0.9995), the concentrations of DFA in the lake water were roughly calculated. DFA was distributed within the range 0.25–0.43 mg C l−1 and accounted for 15%–41% of DOC, with the highest ratios observed at a depth of 70 m in August and the lowest at 2.5 m in
May. 相似文献
10.
van Duyl Fleur C. Bak Rolf P. M. Kop Arjen J. Nieuwland Gerard Berghuis Eilke M. Kok Albert 《Hydrobiologia》1992,(1):267-281
This study investigated the suitability of mesocosms for studying the seasonal development of microbial variables in the benthic system of the North Sea. Undisturbed sediment cores were taken from two locations in the North Sea, one with sandy sediment (28 m depth) and the other with silty sediment (38 m depth) and installed in mesocosms in January–April 1989. Cores were kept as in situ temperature in the dark until December 1989. One set of sandy and silty sediments was starved and the other set received a supply of organic matter in May–June, simulating the settlement of the spring bloom of Phaeocystis pouchetii. Seasonal developments in bacterial production (methyl 3H-thymidine incorporation), abundance and biomass of bacteria and nanoflagellates and oxygen consumption were compared between the mesocosms and the field in surface sediments every 1.5 to 2.5 months. Effects of seasonal temperature variations (range 6–17.5 °C) on microbial variables in starved mesocosms were limited, which possibly indicates a subordinate role of temperature in microbial processes in North Sea sediments. Organic matter produced a direct response in bacterial production and oxygen consumption in mesocosms. Bacterial and protozoan abundance also increased. The effect of the organic input disappeared within 2 months and values of enhanced variables declined to initial levels. The organic matter enrichment in mesocosms apparently did not provide sufficient energy to keep the microbenthos active at field levels through summer.These results suggest that in the silty sediments in the field, organic matter is available for bacterial production throughout summer. In sandy sediments, the major organic matter input, which sets the seasonal pattern, appears to be in June. Apparently the seasonal development of microbial variables can be mimicked in mesocosms with organic matter supplies. Differences between the field and mesocosms are further illustrated by carbon budgets. Recycling of bacterial biomass was required to meet the bacterial carbon demand in the budget.Publication No. 22 of the project Applied Scientific Research Neth. Inst. for Sea Res. (BEWON). 相似文献
11.
Characterization and origin of polar dissolved organic matter from the Great Salt Lake 总被引:2,自引:0,他引:2
Jerry A. Leenheer Ted I. Noyes Colleen E. Rostad M. Lee Davisson 《Biogeochemistry》2004,69(1):125-141
Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake. 相似文献
12.
Long-term changes in Wadden Sea nutrient cycles: importance of organic matter import from the North Sea 总被引:9,自引:0,他引:9
The Wadden Sea is a shallow tidal area along the North Sea coast of The Netherlands, Germany and Denmark. The area is strongly influenced by rivers, the most important of which are the rivers Rhine, Meuse and Elbe. Due to the increased nutrient load into the coastal zone the primary production in the Wadden Sea almost tripled during the past few decades. A conceptual model is presented that links nitrogen input (mainly nitrate) via Rhine and Meuse with the annual nitrogen cycle within the Wadden Sea. Three essential steps in the model are: (1) nitrogen limits the primary production in the coastal zone, (2) a proportional part of the primary produced organic matter is transported into the Wadden Sea and (3) the imported organic matter is remineralized within the Wadden Sea and supports the local productivity by nitrogen turn-over. The conceptual model predicts that during years with a high nutrient load more organic matter is produced in the coastal zone and more organic matter is transported into and remineralized within the Wadden Sea than during years with low nutrient loads. As a proxy for the remineralisation intensity ammonium plus nitrite concentrations in autumn were used. Based on monitoring data from the Dutch Wadden Sea (1977–1997) the above mentioned model was statistically tested. In autumn, however, a significant correlation was found between autumn values of ammonium and nitrite and river input of nitrogen during the previous winter, spring and summer. The analysis supports that in years with a high riverine nitrogen load more organic matter is remineralized within the Wadden Sea than in years with a low nitrogen load. A comparison with older data from 1960 to 1961 suggests that the remineralisation intensity in the Wadden Sea has increased by a factor of two to three. This is not reflected by a two to three-fold increase in riverine nitrogen load from 1960 to present. It is suggested that the increased remineralisation rates in the Dutch Wadden Sea between the 1960s and the 1980s/1990s are largely caused by an increased nitrogen flux through the Channel and the Strait of Dover and by an increased atmospheric nitrogen input. 相似文献
13.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC. 相似文献
14.
Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia 下载免费PDF全文
Effects of grassland conversion to cropland and forest on soil organic carbon (SOC), dissolved organic carbon (DOC) in the farming-pastoral ecotone of Inner Mongolia were investigated by direct field sampling. SOC content and DOC content in soil decreased after grassland were shifted to forest or cropland, in the sequence of grassland soil > forest soil > cropland soil. SOC stock declined by 18% after grassland shifted from to forest. Reclamation of cropland for 10 years, 15 years and 20 years lost SOC in 0–30 cm soil layer, by 34%, 14% and 18%, respectively, compared with that of grassland. DOC in 3 soil layers was within 21.1–26.5 mg/L in grassland, 12.1–14.6 mg/L in forest soil, and 8.0–14.0 mg/L in cropland soil. Correlation analysis indicated that SOC content and DOC content were positively dependent on total nitrogen content (p < 0.05), but negatively on bulk density or land use type (p < 0.05). DOC was positively correlated SOC (p < 0.01). Moreover, SOC content could be quantitatively described by a linear combination of land use types (p = 0.000, r2 = 0.712), and DOC content by a linear combination of two soil-related variables, land use types and SOC (p = 0.000, r2 = 0.861). 相似文献
15.
Effects of grassland conversion to cropland and forest on soil organic carbon (SOC), dissolved organic carbon (DOC) in the farming-pastoral ecotone of Inner Mongolia were investigated by direct field sampling. SOC content and DOC content in soil decreased after grassland were shifted to forest or cropland, in the sequence of grassland soil > forest soil > cropland soil. SOC stock declined by 18% after grassland shifted from to forest. Reclamation of cropland for 10 years, 15 years and 20 years lost SOC in 0–30 cm soil layer, by 34%, 14% and 18%, respectively, compared with that of grassland. DOC in 3 soil layers was within 21.1–26.5 mg/L in grassland, 12.1–14.6 mg/L in forest soil, and 8.0–14.0 mg/L in cropland soil. Correlation analysis indicated that SOC content and DOC content were positively dependent on total nitrogen content (p < 0.05), but negatively on bulk density or land use type (p < 0.05). DOC was positively correlated SOC (p < 0.01). Moreover, SOC content could be quantitatively described by a linear combination of land use types (p = 0.000, r2 = 0.712), and DOC content by a linear combination of two soil-related variables, land use types and SOC (p = 0.000, r2 = 0.861). 相似文献
16.
The paper briefly summarizes what is known about long-term changes (facts, causes, consequences) in the macrozoobenthos of intertidal and subtidal hard-bottom communities around the island of Helgoland (German Bight, North Sea). There is increasing observational evidence that these communities (spectrum and abundances of species) are changing on a long-term temporal scale. The reasons are diverse and mainly anthropogenic. A shift in North Sea climate towards more oceanic conditions may be among the most important factors driving the recent changes in species spectrum. Many of the species which have been recorded as new to the Helgoland area during the past decade are southern (oceanic) species which may be considered as indicators of a warming trend.Communicated by K. Wiltshire 相似文献
17.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales. 相似文献
18.
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征 总被引:2,自引:0,他引:2
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究。颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。 相似文献
19.
Kalevi Salonen 《Hydrobiologia》1979,67(1):29-32
The most retentive glass fibre filters were able to retain almost all bacteria from the water of an oligotrophic lake. Having satisfactory speed and capacity, of filtration this type of filter is quite near to the ideal which should be able to include all algae and bacteria in the category of particulate organic carbon. Similar retention could also be achieved by silver filters but, because of their high blank values, price, and lower filtration speed and capacity, they are not able to compete with glass fibre filters in practical work. 相似文献
20.
Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils
The usefulness of the C/N ratio as an indicator of the decomposability of organic matter in forest soil was assessed. The assessment was based on the relationship between the C/N ratio and the contents of soil organic carbon (SOC), soil nitrogen (total N), dissolved total organic carbon (DTOC) and dissolved inorganic nitrogen (DIN). SOC, total N, DTOC and DIN were determined in soils sampled in coniferous and coniferous–deciduous forest sites from genetic horizons of 48 soil profiles. The variability of the above soil parameters was determined and the correlation between these parameters and the C/N values were calculated. It was found that the C/N ratio in soil was shaped by the difference in the mobility of both elements, whereas the decrease in the C content in subsequent horizons was mostly higher than the decrease in the N content, which means that the C/N value decreased with the depth of a soil profile. When the loss of SOC and total N contents occurs at a similar rate, the C/N ratio is maintained at a more or less stable level despite the advancing SOM mineralization. When the rate of the carbon release from SOM differs from that of nitrogen or when there is an N input from external sources, the C/N ratio does not adequately describe the process of SOM mineralization as well. The correlation coefficients between the C/N ratio and other parameters indicate that the relationships between them are not significant or that there is no correlation at all. It was found that the percentage of DTOC in SOC seemed to be a better indicator of SOM mineralization than the C/N ratio. 相似文献