首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal variability of nutrients and productivity were examined in Pyramid Lake, a hyposaline, N-deficient, terminal desert lake, during a dry period. River inflow and N-fixation during 1990 were minimal allowing internal nutrient cycling to be more closely studied. Nutrient cycling was strongly affected by seasonal thermal stratification that was typical for a warm monomictic lake. Concentrations of nitrate, phosphate, and silicate in surface waters were highest during winter mixing and decreased rapidly in the spring due to a diatom bloom. Maximum average chlorophyll concentration in surface waters was 2.7 ± 1.2 µg 1–1 and occurred in April while surface nutrients were being depleted. In contrast to chlorophyll, maximum particulate carbon in surface waters occurred in July–August when areal productivity was highest (367–398 mg C m–2 day–1). Concurrent with spring nutrient depletion in surface waters was increasing N-deficiency in the plankton. After the spring bloom dissipated in May, particulate matter (POM) became increasingly N-deficient reaching maximum elemental C : N of > 18 during summer-fall. Profiles of the C : N ratio of POM were nearly constant with depth for individual sampling dates suggesting that the residence time of POM in the water column was short (< 1 month). While surface waters were nutrient depleted during summer stratification, nutrient concentrations of bottom waters progressively increased, presumably through the oxidation of POM sinking to the bottom (103 m). Converting the rate of oxygen depletion in bottom waters to carbon equivalents of POM suggests that 42 % of mean annual phytoplankton production in overlying waters during 1990 was mineralized in bottom waters.  相似文献   

2.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

3.
Members of the bacterial phylum Planctomycetes are reported in marine water samples worldwide, but quantitative information is scarce. Here we investigated the phylogenetic diversity, abundance, and distribution of Planctomycetes in surface waters off the German North Sea island Helgoland during different seasons by 16S rRNA gene analysis and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Generally Planctomycetes are more abundant in samples collected in summer and autumn than in samples collected in winter and spring. Statistical analysis revealed that Planctomycetes abundance was correlated to the Centrales diatom bloom in spring 2007. The analysis of size-fractionated seawater samples and of macroaggregates showed that ~90% of the Planctomycetes reside in the >3-μm size fraction. Comparative sequence analysis of 184 almost full-length 16S rRNA genes revealed three dominant clades. The clades, named Planctomyces-related group A, uncultured Planctomycetes group B, and Pirellula-related group D, were monitored by CARD-FISH using newly developed oligonucleotide probes. All three clades showed recurrent abundance patterns during two annual sampling campaigns. Uncultured Planctomycetes group B was most abundant in autumn samples, while Planctomyces-related group A was present in high numbers only during late autumn and winter. The levels of Pirellula-related group D were more constant throughout the year, with elevated counts in summer. Our analyses suggest that the seasonal succession of the Planctomycetes is correlated with algal blooms. We hypothesize that the niche partitioning of the different clades might be caused by their algal substrates.  相似文献   

4.
It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.  相似文献   

5.
杨林林  姜亚洲  程家骅 《生态学报》2010,30(7):1825-1833
依据1997-2000年在东海(26°00′-33°00′N、120°30′-128°00′E)进行的4个季节的底拖网调查资料,分析了该海区太平洋褶柔鱼生殖群体的时空分布特征,同时结合广义相加模型(GAM),量化分析了各环境因子对于其种群成熟度指数(PMI)空间分布的影响机制。结果表明:太平洋褶柔鱼生殖群体春、夏、秋、冬4个季节在东海均有分布;秋季PMI值最高,春季最低;4个季节太平洋褶柔鱼生殖群体的分布范围均较广,主要集中在东海外海受台湾暖流和黑潮控制的水域。太平洋褶柔鱼生殖群体的环境适应性存在明显的季节差异:其分布的底温范围为:春季14.70-18.30℃、夏季13.18-20.91℃、秋季13.96-24.67℃、冬季14.33-19.75℃。底盐范围为:春季29.52-34.63、夏季31.57-34.27、秋季32.26-34.72、冬季34.25-34.70。水深范围为:春季55-179m,夏季43-176m、秋季40-184m、冬季79-152m。综上所述,东海太平洋褶柔鱼生殖群体的时空分布具有广范围、多季度的特点,这种分布特征可有效降低其幼体间的种间竞争,为确保其种群繁衍提供有利保障。  相似文献   

6.
We investigated seasonal changes in blood concentrations of interleukin-6 (IL-6), adrenocorticotrophic hormone (ACTH), metabolites of catecholamine (VMA, HVA, and 5-HIAA) and cortisol in humans. Eight volunteers were investigated at four times during the year (February, May, August and October) at latitude 35° N. The mean ambient temperature at the collection periods was higher in the order of summer > autumn ≈ spring > winter. Changes in mood were also monitored by a profile of mood states (POMS) questionnaire. The concentration of IL-6 was significantly higher in winter and summer than in spring and autumn. The concentrations of ACTH, HVA and VMA were significantly higher in summer. No seasonal variation was detected in cortisol. There were significant differences among the seasons in subscale tension and anger in the POMS questionnaire; the tension subscale showed significant differences between spring and autumn, with a higher score in spring. The results demonstrate that Il-6, ACTH, HVA and VMA exhibit statistically significant seasonal rhythms, which might have important diagnostic and therapeutic implications.  相似文献   

7.
Seasonal variability of inorganic and organic nitrogen in the North Sea   总被引:1,自引:1,他引:0  
This study considers the cycling of nitrogen in the waters of the North Sea, particularly focussing on organic nitrogen. Dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and particulate organic nitrogen (PON) were measured in the North Sea over a one-year period (autumn 2004–summer 2005). The surface water concentrations of nitrate, ammonium, DON and PON during the present study ranged from <0.1–7.2 μM, <0.1–2.0 μM, 1.9–11.2 μM and 0.3–5.6 μM, respectively, with DON the dominant fraction of total nitrogen at all times. These nutrients concentrations were significantly lower compared to previous studies in the southern North Sea. The seasonal variations showed high mean surface concentrations of nitrate (4.7 ± 0.6 μM) and DON (8.9 ± 0.9 μM), low ammonium (<0.1 μM) and PON (0.8 ± 0.1 μM) in winter, shifting to low nitrate (0.3 ± 0.3 μM) and DON (4.2 ± 1.2 μM) in summer, with high ammonium (0.8 ± 0.4 μM) in autumn and PON (2.5 ± 1.2 μM) in spring. Highest mean surface DON concentration was measured in winter and may be due to resuspension of the organic matter from the bottom sediments. For autumn and spring, phytoplankton DON release was likely to be the most significant source of DON as shown by high concentrations of low molecular weight (LMW) DON and its positive correlation to chlorophyll a. Low total and LMW DON concentrations during summer were likely to be due to the uptake of the LMW DON fraction by phytoplankton and bacteria and the stratification of the water column. DON is therefore shown to be a potentially important source of nitrogen in shelf seas especially after the spring bloom has depleted nitrate to limiting concentrations. Handling editor: L. Naselli-Flores  相似文献   

8.
Variation in dissolved organic carbon (DOC) concentrations of surface waters is a consequence of process changes in the surrounding terrestrial environment, both within annual cycles and over the longer term. Long-term records (1987–2006) of DOC concentrations at six catchments (0.44–10.0 km2) across a climatic transect in Scotland were investigated for intra-annual relationships to evaluate potential long-term seasonal patterns. The intra-annual mode of DOC export contrasted markedly between catchments and appeared dependent on their hydrological characteristics. Catchments in wetter Central Scotland with high rainfall–runoff ratios, short transit times and well-connected responsive soils show a distinct annual periodicity in DOC concentrations throughout the long-term datasets. Increased DOC concentrations occurred between June and November with correspondingly lower DOC concentrations from December to May. This appears unrelated to discharge, and is dependent mainly on higher temperatures driving biological activity, increasing decomposition of available organic matter and solubility of DOC. The drier eastern catchments have lower rainfall–runoff ratios, longer transit times and annual drying–wetting regimes linked to changing connectivity of soils. These are characterised by seasonal DOC concentration–discharge relationships with an autumnal flush of DOC. Temperature influences the availability of organic matter for DOC transport producing a high DOC concentration–discharge relationship in summer/autumn and low DOC concentration–discharge relationship in winter/spring. These two distinct modes of seasonal DOC transport have important implications for understanding changes in DOC concentrations and export brought about by climate change (temperature and precipitation) and modelling of aquatic carbon losses from soil-types under different hydrological regimes.  相似文献   

9.
Metabolic diversity of heterotrophic bacterioplankton was tracked from early winter through spring with Biolog Ecoplates under the seasonally ice covered arctic shelf in the Canadian Arctic (Franklin Bay, Beaufort Sea). Samples were taken every 6 days from December 2003 to May 2004 at the surface, the halocline where a temperature inversion occurs, and at 200 m, close to the bottom. Despite the low nutrient levels and low chlorophyll a , suggesting oligotrophy in the winter surface waters, the number of substrates used (NSU) was greater than in spring, when chlorophyll a concentrations increased. Denaturing gradient gel electrophorisis analysis also indicated that the winter and spring bacterial communities were phylogenetically distinct, with several new bands appearing in spring. In spring, the bacterial community would have access to the freshly produced organic carbon from the early phytoplankton bloom and the growth of rapidly growing specialist phenotypes would be favoured. In contrast, in winter bacterioplankton consumed more complex organic matter originated during the previous year's phytoplankton production. At the other depths we tested the NSU was similar to that for the winter surface, with no seasonal pattern. Instead, bacterioplankton metabolism seemed to be influenced by resuspension, advection, and sedimentation events that contributed organic matter that enhanced bacterial metabolism.  相似文献   

10.
大亚湾表层水中溶解无机碳的时空分布   总被引:2,自引:0,他引:2  
于2010 年12 月~2011 年11 月分4 个季度,对大亚湾海域进行了采样调查,分析了大亚湾表层水体中溶解无机碳(Dissolved inorganic carbon, DIC)含量的时空分布特征,并讨论了大亚湾表层水DIC 与pH、盐度、水温和叶绿素a 等环境因子之间的关系。大亚湾海域表层水DIC 含量的变化范围为19.49~23.20 mg·L-1,均值为21.13±1.07 mg·L-1,较黄海及东海水域的DIC 含量低。DIC 的水平分布大致呈现出西部及西北部海域高于东部及湾口海域的趋势。大亚湾表层水DIC 含量呈现出冬季>夏季>秋季>春季的季节变化趋势,但春、夏及秋季差异不大。大亚湾海域表层水的DIC 含量除与盐度呈现了显著的正相关关系外,与pH 值、水温及叶绿素a 显示出负相关,但不显著。大亚湾海域DIC 的时空分布特征是多种因素综合作用的结果,其同时受季风、水温、盐度、水动力、生物地球化学和生物等因子的影响。  相似文献   

11.
Nutrient enrichment experiments were conducted with a Narragansett Bay clone of Rhizosolenia fragilissima to examine the potential influence of nutrients in regulating its seasonal cycle in this embayment, and their contribution to its coastal tendencies. Growth rates were measured at 18 C and 1000 ft-c continuous illumination in surface waters enriched in 15 different ways. Narragansett Bay was sampled in March, May, September, and December. Six stations on a transect from this Bay to the Sargasso Sea were sampled during late summer. The data and our previous autecological observations are consistent with the idea that the annual cycle of this species in Narragansett Bay is associated with temperature, chemical “water quality,” and unknown factors. Its absence during late fall and winter may reflect low temperatures and a trace metal (Co, Mo) inadequacy. In early spring, low temperature appears to be the limiting factor, whereas in late spring and early summer trace metals again appear to prevent active growth. A late summer-early autumn bloom occurs periodically during optimal temperature conditions; this can terminate independently of grazing pressure, and in spite of seemingly adequate light-temperature-salinity and phosphate conditions.  相似文献   

12.
为了解闽江口常见鱼类群落的营养结构特征,于2015年冬季(1月)、春季(5月)、夏季(8月)、秋季(11月)采集闽江口底拖网渔业资源样品,利用稳定同位素分析闽江口常见鱼类群落营养结构特征及其季节性变化,并计算了基于δ13C-δ15N量化的7个营养结构的群落范围指标.结果表明: 闽江口常见鱼类群落除夏季和秋季的δ13C值之间不存在显著性差异,其余各季节之间δ13C值均差异显著;δ15N值春季与其余3个季节都表现出显著性差异,而其余3个季节δ15N值互相之间均无显著性差异.稳定同位素的量化指标表明: 闽江口常见鱼类群落的营养结构存在季节差异,春季的生态位总空间(TA)、核心生态位空间(SEAc)、鱼类基础食物来源(CR)、营养长度(NR)、鱼类营养多样性(CD)均为四季的最大值;从夏季至秋季再到冬季,生态位总空间(TA)、核心生态位空间(SEAc)、鱼类基础食物来源(CR)、营养长度(NR)、鱼类营养多样性(CD)和营养位置差异(MNND)均逐步上升.闽江口常见鱼类群落营养结构的季节差异可能与鱼类生殖洄游和群落内食源多样性的变化密切相关.  相似文献   

13.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

14.
Martins MI  de Souza FF  Oba E  Lopes MD 《Theriogenology》2006,66(6-7):1603-1605
Photoperiod and environmental temperature are two important factors that may influence the reproductive cycle of various species. The objective of this study was to investigate seasonal influences on serum testosterone concentrations in dogs in a tropical zone, where the variation in day length between winter and summer solstice was approximately 2.5 h. Blood samples were collected every 15 days from seven adult dogs over a 14-month interval and serum testosterone concentrations were determined by radioimmunoassay. The year was divided into four seasons and mean testosterone concentrations for each season were related to the mean environmental temperature and rainfall during that season. Mean testosterone concentrations were 1.81 ng/mL (winter 2002), 1.93 ng/mL (spring 2002), 1.31 ng/mL (summer 2003), 2.02 ng/mL (autumn 2003) and 1.93 ng/mL (winter 2003). The temperature ranged from 10.2 to 32.8 degrees C and the rainfall from 33 to 476 mm. Serum testosterone concentrations were lower in summer 2003 than in both spring 2002 (P = 0.05) and autumn 2003 (P = 0.016). In a tropical zone, a combination of high temperature and substantial rainfall may have reduced serum testosterone concentrations in dogs.  相似文献   

15.
This study was designed to investigate any seasonal (spring, summer, autumn and winter) changes in haematological parameters in the blood of Tinca tinca measuring the number of red blood cells (RBC), haematocrit, white blood cells, and total plasma proteins.The results show significant changes in RBC and haematocrit in males comparing spring and summer with autumn and winter, whereas in females the RBC remained constant for all 4 seasons but the haematocrit decreased in autumn and winter compared to spring and summer. The white blood cells of male and female animals were significantly lower in spring and winter compared to summer and autumn. In male fish total protein contents significantly decreased in autumn and winter compared to spring and summer, whereas in females protein output significantly decreased in winter compared to the other seasons. The results indicate marked seasonal variation in the blood of male and female Tinca tinca. This variation may play a important protective role for the survival of the animals.  相似文献   

16.
The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L−1 hr−1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0°C and the DOC concentration was greatest. The turnover time of thein situ glucose pool ranged seasonally from 40–1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations.  相似文献   

17.
We undertook a study in Lake Taihu, China, from 2005 to 2009 including a total of 639 samples to determine: (i) the seasonal dynamics and spatial distribution of the chemical oxygen demand (COD) and (ii) the relationships between the COD concentration and the biochemical oxygen demand (BOD), phytoplankton pigment, total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) concentrations, as well as the chromophoric dissolved organic matter (CDOM) absorption coefficient. There were significant spatial differences in the COD concentration, which gradually decreased from Zhushan Bay in the northwest, to the north, the lake center, and the southeast of the lake. The COD concentration was significantly higher at near-shore sites than that at open water sites. The mean COD concentrations were significantly higher in the spring and summer than in the winter and autumn. The lowest annual mean COD concentration appeared in 2009, which could be attributed to improvements in water quality management and high rainfall. The COD concentrations in all four seasons were strongly correlated with phytoplankton pigment, suggesting that extracellular release of COD from phytoplankton was an important COD source. The correlation coefficients between the COD and phytoplankton pigment concentrations were higher in the spring, summer, and autumn than in the winter, showing a more important contribution of phytoplankton degradation to COD in the algal bloom season than in the non-algal bloom season. These new data on the temporal and spatial characteristics of the COD in Lake Taihu will be crucial for developing future strategies for water quality management.  相似文献   

18.
19.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

20.
Release of dissolved organic carbon (DOC) by seaweed underpins the microbial food web and is crucial for the coastal ocean carbon cycle. However, we know relatively little of seasonal DOC release patterns in temperate regions of the southern hemisphere. Strong seasonal changes in inorganic nitrogen availability, irradiance, and temperature regulate the growth of seaweeds on temperate reefs and influence DOC release. We seasonally surveyed and sampled seaweed at Coal Point, Tasmania, over 1 year. Dominant species with or without carbon dioxide (CO2) concentrating mechanisms (CCMs) were collected for laboratory experiments to determine seasonal rates of DOC release. During spring and summer, substantial DOC release (10.06–33.54 μmol C · g DW−1 · h−1) was observed for all species, between 3 and 27 times greater than during autumn and winter. Our results suggest that inorganic carbon (Ci) uptake strategy does not regulate DOC release. Seasonal patterns of DOC release were likely a result of photosynthetic overflow during periods of high gross photosynthesis indicated by variations in tissue C:N ratios. For each season, we calculated a reef-scale net DOC release for seaweed at Coal Point of 7.84–12.9 g C · m−2 · d−1 in spring and summer, which was ~16 times greater than in autumn and winter (0.2–1.0 g C · m−2 · d−1). Phyllospora comosa, which dominated the biomass, contributed the most DOC to the coastal ocean, up to ~14 times more than Ecklonia radiata and the understory assemblage combined. Reef-scale DOC release was driven by seasonal changes in seaweed physiology rather than seaweed biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号