首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background:  Helicobacter pylori causes peptic ulcer disease and gastric cancer, and the oral cavity is likely to serve as a reservoir for this pathogen. We investigated the binding of H. pylori to the mucins covering the mucosal surfaces in the niches along the oral to gastric infection route and during gastric disease and modeled the outcome of these interactions.
Materials and Methods:  A panel of seven H. pylori strains with defined binding properties was used to identify binding to human mucins from saliva, gastric juice, cardia, corpus, and antrum of healthy stomachs and of stomachs affected by gastritis at pH 7.4 and 3.0 using a microtiter-based method.
Results:  H. pylori binding to mucins differed substantially with the anatomic site, mucin type, pH, gastritis status, and H. pylori strain all having effect on binding. Mucins from saliva and gastric juice displayed the most diverse binding patterns, involving four modes of H. pylori adhesion and the MUC5B, MUC7, and MUC5AC mucins as well as the salivary agglutinin. Binding occurred via the blood-group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), a charge/low pH-dependent mechanism, and a novel saliva-binding adhesin. In the healthy gastric mucus layer only BabA and acid/charge affect binding to the mucins, whereas in gastritis, the BabA/Leb-dependent binding to MUC5AC remained, and SabA and low pH binding increased.
Conclusions:  The four H. pylori adhesion modes binding to mucins are likely to play different roles during colonization of the oral to gastric niches and during long-term infection.  相似文献   

2.
Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.  相似文献   

3.
A glycosulfatase activity toward gastric sulfomucin was identified in the extracellular material elaborated by H. pylori. The enzyme exhibited maximum activity at pH 5.7 in the presence of Triton X-100 and CaCl2, and displayed on SDS-PAGE an apparent molecular weight of 30kDa. The H. pylori glycosulfatase effectively caused desulfation of N-acetylglucosamine-6-sulfate and galactose-6-sulfate of the carbohydrate chains of mucins, as well as that of glucose-6-sulfate of glyceroglucolipids, but was ineffective towards galactosyl- and lactosylceramide sulfates which contain galactose-3-sulfate. The glycosulfatase activity towards human gastric sulfomucin was affected by an antiulcer agent, nitecapone, which at its optimal concentration (100 micrograms/ml) caused a 61% inhibition. The results show that H. pylori through its glycosulfatase activity causes desulfation of sulfated mucins and glyceroglucolipids of the protective mucus layer, and that nitecapone is able to interfere with this detrimental action.  相似文献   

4.
Binding of [3H]epinephrine to plasma membrane enriched fractions from guinea pig heart and rabbit skeletal muscle was investigated using the micropore filtration technique. [3H]Epinephrine and [3H]norepinephrine were found to be degraded rapidly in aqueous buffer at pH 7.6 and 37 degrees C. Deterioration of the compounds could be prevented by low concentrations of dithiothreitol. Binding of [3H]epinephrine to both membrane preparations was a slow process requiring 60 min to approach equilibrium in the case of cardiac membranes at 37 degrees C, and 20 min for skeletal muscle membranes at O degrees C. Binding was antagonized by the unlabeled beta-agonists, isopropylnorepinephrine, epinephrine, and norepinephrine but all were equipotent. A variety of catechol compounds were as effective antagonists of binding as the catecholamines. The beta-adrenergic antagonists propranolol, pronethalol, and dichloroisoproterenol were not effective in inhibiting binding to either membrane preparation. D-Norepinephrine and L-norepinephrine were equi-effective in antagonizing binding of [3H]norephinephrine to skeletal muscle membranes. It was concluded that binding of labeled catecholamine to isolated tissue membranes using the micropore filtration technique does not represent interaction with the specific beta-adrenergic receptor, but more likely reflects a less specific binding of compounds having one or more hydroxyl groups on a ring.  相似文献   

5.
P Lazarovici  E Yavin 《Biochemistry》1986,25(22):7047-7054
The pharmacokinetic interaction of an affinity-purified 125I-labeled tetanotoxin fraction with guinea pig brain synaptosomal preparations was investigated. Binding of tetanotoxin was time- and temperature-dependent, was proportional to protein concentration, and was saturable at about 8 X 10(-9) M as estimated by a solid-surface binding assay. Binding was optimal at pH 6.5 under low ionic strength buffer and was almost entirely blocked by gangliosides or antitoxin. In analogy to intact nerve cells, binding of toxin to membranes resulted in a tight association operationally defined as sequestration. Binding and sequestration were abolished after membrane pretreatment with sialidase. The enzyme could not dissociate the membrane-bound toxin formed at 4 or 37 degrees C under low ionic strength conditions, which is in part compatible with internalization as defined in nerve cell cultures. In the latter system the toxin could be removed at 4 degrees C but not at 37 degrees C. Binding was significantly reduced upon pretreatment of guinea pig brain membranes by a variety of hydrolytic enzymes. Trypsin and chymotrypsin inhibited binding between 55% and 68% while bacterial protease abolished it by 91-95%. The effect was species-specific as it was not seen in rat or bovine synaptosomes. Collagenase and hyaluronidase had little or no inhibitory effect when applied to synaptosomes (27% and 9%) but inhibited binding to synaptic vesicles by 56% and 49%, respectively. Phospholipases A2 and C caused 42-43% inhibition of binding in vesicles and less than 22% in synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
BACKGROUND: Helicobacter pylori infection leads to gastritis, peptic ulcer, and gastric cancer, in part due to epithelial damage following bacteria binding to the epithelium. Infection with cag pathogenicity island (PAI) bearing strains of H. pylori is associated with increased gastric inflammation and a higher incidence of gastroduodenal diseases. It is now known that various effector molecules are injected into host epithelial cells via a type IV secretion apparatus, resulting in cytoskeletal changes and chemokine secretion. Whether binding of bacteria and subsequent apoptosis of gastric epithelial cells are altered by cag PAI status was examined in this study. METHODS: AGS, Kato III, and N87 human gastric epithelial cell lines were incubated with cag PAI-positive or cag PAI-negative strains of H. pylori in the presence or absence of clarithromycin. Binding was evaluated by flow cytometry and scanning electron microscopy. Apoptosis was assessed by detection of DNA degradation and ELISA detection of exposed histone residues. RESULTS: cag PAI-negative strains bound to gastric epithelial cells to the same extent as cag PAI-positive strains. Both cag PAI-positive and cag PAI-negative strains induced apoptosis. However, cag PAI-positive strains induced higher levels of DNA degradation. Incubation with clarithromycin inactivated H. pylori but did not affect binding. However, pretreatment with clarithromycin decreased infection-induced apoptosis. CONCLUSIONS: cag PAI status did not affect binding of bacteria to gastric epithelial cells but cag PAI-positive H. pylori induced apoptosis more rapidly than cag PAI-negative mutant strains, suggesting that H. pylori binding and subsequent apoptosis are differentially regulated with regard to bacterial properties.  相似文献   

7.
Constitutive expression of gamma-glutamyltranspeptidase (GGT) activity is common to all Helicobacter pylori strains, and is used as a marker for identifying H. pylori isolates. Helicobacter pylori GGT was purified from sonicated extracts of H. pylori strain 85P by anion exchange chromatography. The N-terminal amino acid sequences of two of the generated endo-proteolysed peptides were determined, allowing the cloning and sequencing of the corresponding gene from a genomic H. pylori library. The H. pylori ggt gene consists of a 1681 basepair (bp) open reading frame encoding a protein with a signal sequence and a calculated molecular mass of 61 kDa. Escherichia coli clones harbouring the H. pylori ggt gene exhibited GGT activity at 37 degrees C, in contrast to E. coli host cells (MC1061, HB101), which were GGT negative at 37 degrees C. GGT activity was found to be constitutively expressed by similar genes in Helicobacter felis, Helicobacter canis, Helicobacter bilis, Helicobacter hepaticus and Helicobacter mustelae. Western immunoblots using rabbit antibodies raised against a His-tagged-GGT recombinant protein demonstrated that H. pylori GGT is synthesized in both H. pylori and E. coli as a pro-GGT that is processed into a large and a small subunit. Deletion of a 700 bp fragment within the GGT-encoding gene of a mouse-adapted H. pylori strain (SS1) resulted in mutants that were GGT negative yet grew normally in vitro. These mutants, however, were unable to colonize the gastric mucosa of mice when orally administered alone or together (co-infection) with the parental strain. These results demonstrate that H. pylori GGT activity has an essential role for the establishment of the infection in the mouse model, demonstrating for the first time a physiological role for a bacterial GGT enzyme.  相似文献   

8.
We investigated cholecystokinin (CCK) receptors on isolated gastric chief cells from guinea pig. CCK stimulated pepsinogen secretion from chief cells at the same efficacy as that induced by carbamylcholine. Binding of 125I-labeled CCK-33 (125I-CCK) to chief cells was temperature-dependent, and was saturable and reversible at 37 degrees C. Hofstee plots of the ability of CCK-8 to inhibit binding of 125I-CCK showed a linear regression line, suggesting that CCK receptors possessed one binding site. The dissociation constant of the binding site was calculated to be 3.8 x 10(-10) M. The dose-response curve of CCK for pepsinogen secretion was superimposed on that for the binding to its receptors. These results indicated that gastric chief cells from the guinea pig possess CCK receptors that relate closely to the action of CCK involved in pepsinogen secretion.  相似文献   

9.
The emergence of antibiotic-resistant Helicobacter pylori is of concern in the treatment of H. pylori-associated gastroduodenal diseases. As the organism was reported to bind gastric mucin, we used porcine gastric mucin as substrate to assess the antiadhesive property of polysaccharides derived from Spirulina (PS), a commercially available microalga, against the binding of H. pylori to gastric mucin. Results show that polysaccharides prevented H. pylori from binding to gastric mucin optimally at pH 2.0, without affecting the viability of either bacteria or gastric epithelial cells, thus favouring its antiadhesive action in a gastric environment. Using ligand overlay analysis, polysaccharide was demonstrated to bind H. pylori alkyl hydroperoxide reductase (AhpC) and urease, which have shown here to possess mucin-binding activity. An in vivo study demonstrated that bacteria load was reduced by >90% in BALB/c mice treated with either Spirulina or polysaccharides. It is thus suggested that polysaccharides may function as a potential antiadhesive agent against H. pylori colonization of gastric mucin.  相似文献   

10.
Background: Helicobacter pylori colonize the mucus layer that covers the gastric epithelium and can cause gastritis, ulcers, and gastric cancer. Recently, Lactobacillus sp. have also been found to reside in this niche permanently. This study compares adhesive properties and proliferation of co‐isolated lactobacilli and H. pylori in the presence of mucins and investigates possibilities for lactobacilli‐mediated inhibition of H. pylori. Materials and methods: Binding and proliferation of four H. pylori and four Lactobacillus strains, simultaneously isolated after residing in the stomachs of four patients for >4 years, to human gastric mucins were investigated using microtiter‐based methods. Results: The H. pylori strains co‐isolated with lactobacilli exhibited the same mucin binding properties as demonstrated for H. pylori strains previously. In contrast, no binding to mucins was detected with the Lactobacillus strains. Proliferation of mucin‐binding H. pylori strains was stimulated by the presence of mucins, whereas proliferation of non‐binding H. pylori and Lactobacillus strains was unaffected. Associative cultures of co‐isolated H. pylori and Lactobacillus strains showed no inhibition of H. pylori proliferation because of the presence of whole bacteria or supernatant of lactobacilli. Conclusions: The presence of lactobacilli in the stomach did not select for different mucin binding properties of H. pylori, and Lactobacillus sp. did neither compete for binding sites nor inhibit the growth of co‐isolated H. pylori. The effects of human gastric mucins on H. pylori proliferation vary between strains, and the host–bacteria interaction in the mucus niche thus depends on both the H. pylori strain and the microenvironment provided by the host mucins.  相似文献   

11.
Isolation of MUC5AC mucins from the gastric mucosa from two secretor individuals (one from normal mucosa from a patient with gastric cancer and one from a control) showed different abilities to bind and induce the proliferation of the Helicobacter pylori strain J99. Analysis of the released O-linked oligosaccharides by LC-MS from these individuals showed a very heterogeneous mixture of species from the cancer patient containing both neutral and sialylated structures, whereas the normal sample showed dominating neutral blood group H terminating structures as well as neutral structures containing the di-N-acetyllactosamine (lacdiNAc) unit GalNAcβ1-4GlcNAcβ1- on the C-6 branch of the reducing end GalNAc. The linkage configuration of these epitopes were determined using C-4-specific fragmentation for the GalNAcβ1-4GlcNAcβ1- glycosidic linkage, comparison of the MS(3) fragmentation with standards for linkage configuration and N-acetylhexosamine type as well as exoglycosidase treatment. It was also shown that the lacdiNAc epitope is present in both human and porcine gastric mucins, indicating that this is an epitope preserved between species. We hypothesize that the termination on gastric MUC5AC with lacdiNAc is in competition with complex glycosylation such as the Le(b) and H type 1 as well as complex sialylated structures. These are epitopes known to bind the H. pylori BabA and SabA adhesins.  相似文献   

12.
13.
Abstract Laminin, the major glycoprotein of basement membranes, was shown to be bound by the human gastric pathogen Helicobacter pylori . Binding of 125I-laminin by strain 17874 was time-dependent, specific and saturable. Scatchard analysis of specific binding indicated about 2000 binding sites per cell with a dissociation constant of 8.5 pM. Treatment of the cells by heat (80°) and with proteolytic enzymes drastically reduced laminin binding, suggesting that the laminin receptors are surface proteins. Some highly glycosylated glycoproteins inhibited laminin binding by 50%. Furthermore, N -acetylneuraminyllactose decreased laminin binding by 70% and neuraminidase treatment of laminin by 50%, while a recombinant B1 chain of laminin, containing high-mannose type oligosaccharides, inhibited binding by only 25%. This suggests that terminal sialic acids on laminin compete for a specific sugar binding protein(s) on H. pylori cells.  相似文献   

14.
Breast milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. In a previous study, we showed that pigs express the Helicobacter pylori receptors, sialyl Lewis x (Le x) and Le b, on various milk proteins. Here, we investigate the pig breed- and individual-specific expression of these epitopes, as well as the inhibitory capacity of porcine milk on H. pylori binding and colonization. Milk proteins from three different pig breeds were analysed by western blotting using antibodies with known carbohydrate specificity. An adhesion assay was used to investigate the capacity of pig milk to inhibit H. pylori binding to neoglycoproteins carrying Le b and sialyl-di-Le x. alpha1,3/4-fucosyltransferase transgenic FVB/N mice, known to express Le b and sialyl Le x in their gastric epithelium, were colonized by H. pylori and were subsequently treated with Le b- and sialyl Le x-expressing or nonexpressing porcine milk, or water (control) only. The degree of H. pylori colonization in the different treatment groups was quantified. The expression of the Le b and sialyl Le x carbohydrate epitopes on pig milk proteins was breed- and individual specific and correlated to the ability of porcine milk to inhibit H. pylori adhesion in vitro and H. pylori colonization in vivo. Milk from certain pig breeds may have a therapeutic and/or prophylactic effect on H. pylori infection.  相似文献   

15.
Chan EC  Chang CC  Li YS  Chang CA  Chiou CC  Wu TZ 《Biochemistry》2000,39(16):4838-4845
Phospholipase activities of human gastric bacterium, Helicobacter pylori, are regarded as the pathogenic factors owing to their actions on epithelial cell membranes. In this study, we purified and characterized neutral sphingomyelinase (N-SMase) from the superficial components of H. pylori strains for the first time. N-SMase was purified 2083-fold with an overall recovery of 37%. The purification steps included acid glycine extraction, ammonium sulfate precipitation, CM-Sepharose, Mono-Q, and Sephadex G-75 column chromatography. Approximate molecular mass for the native N-SMase was around 32 kDa. When N-omega-trinitrophenylaminolauryl sphingomyelin (TNPAL-SM) was used as a substrate, the purified enzyme exhibited a K(m) of 6.7 microM and a V(max) of 15.6 nmol of TNPAL-sphingosine/h/mg of protein at 37 degrees C in 50 mM phosphate-buffered saline, pH 7.4. N-SMase reaches optimal activity at pH 7.4 and has a pI of 7.15. The enzyme activity is magnesium dependent and specifically hydrolyzed sphingomyelin and phosphatidylethanolamine. The enzyme also exhibits hemolytic activity on human erythrocytes. According to Western blot analysis, a rabbit antiserum against purified N-SMase from H. pylori cross-reacted with SMase from Bacillus cereus. Sera from individuals with H. pylori infection but not uninfected ones recognizing the purified N-SMase indicated that it was produced in vivo. In enzyme-linked immunosorbent assays, the purified N-SMase used as an antigen was as effective as crude protein antigens in detecting human antibodies to H. pylori.  相似文献   

16.
The binding of Helicobacter pylori to glycosphingolipids was examined by binding of (35)S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. In addition to previously reported binding specificities, a selective binding to a non-acid tetraglycosylceramide of human meconium was found. This H. pylori binding glycosphingolipid was isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, were identified as Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer (lactotetraosylceramide). When using non-acid glycosphingolipid preparations from human gastric epithelial cells, an identical binding of H. pylori to the tetraglycosylceramide interval was obtained in one of seven samples. Evidence for the presence of lactotetraosylceramide in the binding-active interval was obtained by proton NMR spectroscopy of intact glycosphingolipids and by gas chromatography-electron ionization mass spectrometry of permethylated tetrasaccharides obtained by ceramide glycanase hydrolysis. The lactotetraosylceramide binding property was detected in 65 of 74 H. pylori isolates (88%). Binding of H. pylori to lactotetraosylceramide on thin-layer chromatograms was inhibited by preincubation with lactotetraose but not with lactose. Removal of the terminal galactose of lactotetraosylceramide by galactosidase hydrolysis abolished the binding as did hydrazinolysis of the acetamido group of the N-acetylglucosamine. Therefore, Galbeta3GlcNAc is an essential part of the binding epitope.  相似文献   

17.
The use of a miniature column chromatographic assay (using Sepharose CL-4B columns) for measuring mucin production in guinea pig gastric mucous cell cultures is described. The assay was based upon the ability of radiolabelled precursors ([14C]serine and [3H]galactose) to incorporate with high specificity into mucins which thereby appeared in the excluded material. Rates of excluded material radiolabelling by both precursors were constant for incubations up to 24 hours, and substantially reduced by cycloheximide co-incubation (25 microM). Labelled excluded material was completely degraded by mild alkaline borohydride treatment, only partially degraded by HNO2 (pH 1.5), and not degraded by chondroitinase ABC. Thus the major radiolabelled product measured in this system was mucin, although we found that it was less glycosylated than gastric mucins obtained from other sources. In addition, the technique employed to separate and measure mucin production proved rapid and consistent.  相似文献   

18.
Because the mechanisms of Helicobacter pylori-induced gastric injury are incompletely understood, we examined the hypothesis that H. pylori induces matrix metalloproteinase-1 (MMP-1) secretion, with potential to disrupt gastric stroma. We further tested the role of CagA, an H. pylori virulence factor, in MMP-1 secretion. Co-incubation of AGS cells with Tx30a, an H. pylori strain lacking the cagA virulence gene, stimulated MMP-1 secretion, confirming cagA-independent secretion. Co-incubation with strain 147C (cagA(+)) resulted in CagA translocation into AGS cells and increased MMP-1 secretion relative to Tx30a. Transfection of cells with the recombinant 147C cagA gene also induced MMP-1 secretion, indicating that CagA can independently stimulate MMP-1 secretion. Co-incubation with strain 147A, containing a cagA gene that lacks an EPIYA tyrosine phosphorylation motif, as well as transfection with 147A cagA, yielded an MMP-1 secretion intermediate between no treatment and 147C, indicating that CagA tyrosine phosphorylation regulates cellular signaling in this model system. H. pylori induced activation of the MAP kinase ERK, with CagA-independent (early) and dependent (later) components. MEK inhibitors UO126 and PD98059 inhibited both CagA-independent and -dependent MMP-1 secretion, whereas p38 inhibition enhanced MMP-1 secretion and ERK activation, suggesting p38 negative regulation of MMP-1 and ERK. These data indicate H. pylori effects on host epithelial MMP-1 expression via ERK, with p38 playing a potential regulatory role.  相似文献   

19.
Helicobacter pylori, a microaerophilic Gram-negative bacterium, is known to cause chronic gastritis, peptic ulcer and gastric cancer. Genes that are present in certain isolates may determine strain-specific traits such as disease association and drug resistance. In order to understand the pathogenic mechanisms of gastric diseases, identify molecular markers of the diseases associated with H. pylori strains and provide clues for target treatment of H. pylori-related diseases, a subtracted DNA library was constructed from a gastric cancer-associated H. pylori strain and a superficial gastritis-associated H. pylori strain by suppression subtractive hybridization. The presence of gastric cancer-specific genes was identified by dot blot hybridization, DNA sequencing and PCR-based screening. Twelve gastric cancer-specific high-copy genes and nine low-copy genes were found in gastric cancer compared with the superficial gastritis strain. These genes were confirmed by PCR analysis of H. pylori isolates. Notably, peptidyl-prolyl cis-trans isomerase (PPIase) was detected positively in 11 out of 22 (50%) gastric cancer-associated H. pylori strains. In contrast, <24% of the H. pylori strains from superficial gastritis showed positive results. Given the potential role of PPIases in cell growth, apoptosis and oncogenic transformation, our results suggest that PPIase may represent a novel marker and potential therapeutic target for gastric cancer.  相似文献   

20.
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号