首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new algorithm, Nitrous Oxide Emission (NOE) for simulating the emission of the greenhouse gas N2O from agricultural soils. N2O fluxes are calculated as the result of production through denitrification and nitrification and reduction through the last step of denitrification. Actual denitrification and nitrification rates are calculated from biological parameters and soil water‐filled pore space, temperature and mineral nitrogen contents. New suggestions in NOE consisted in introducing (1) biological site‐specific parameters of soil N2O reduction and (2) reduction of the N2O produced through nitrification to N2 through denitrification. This paper includes a database of 64 N2O fluxes measured on the field scale with corresponding environmental parameters collected from five agricultural situations in France. This database was used to test the validity of this algorithm. Site per site comparison of simulated N2O fluxes against observed data leads to mixed results. For 80% of the tested points, measured and simulated fluxes are in accordance whereas the others resulted in an important discrepancy. The origin of this discrepancy is discussed. On the other hand, mean annual fluxes measured on each site were strongly correlated to mean simulated annual fluxes. The biological site‐specific parameter of soil N2O reduction introduced into NOE appeared particularly useful to discriminate the general level of N2O emissions from site to site. Furthermore, the relevance of NOE was confirmed by comparing measured and simulated N2O fluxes using some data from the US TRAGNET database. We suggest the use of NOE on a regional scale in order to predict mean annual N2O emissions.  相似文献   

2.
氧化亚氮(nitrous oxide, N2O)排放量的持续增加对全球生态平衡造成了严重的威胁。微生物N2O排放占主要来源。其中,好氧氨氧化过程是氨在有氧的条件下氧化为亚硝酸盐,其直接或间接地影响着全球产生N2O与释放量。氨氧化古菌(ammonia-oxidizing archaea, AOA)、氨氧化细菌(ammonia-oxidizing bacteria, AOB)、全程氨氧化菌(complete ammonia oxidization, Comammox)和异养氨氧化菌(heterotrophic ammonium oxidizing bacteria, HAOB)是氨氧化过程中主要的参与者,明确这四类微生物N2O产生的机制对缓解全球N2O排放是必要的。本文综述了AOA、AOB、Comammox和HAOB在好氧氨氧化过程中驱动的N2O产生途径,并结合酶学分析了一些关键酶在N2O产生途径中的作用。本文旨在为调控生物N2O排放提供理论基础。  相似文献   

3.
4.
There is uncertainty in the estimates of indirect nitrous oxide (N2O) emissions as defined by the Intergovernmental Panel on Climate Change (IPCC). The uncertainty is due to the challenge and dearth of in situ measurements. Recent work in a subtropical stream system has shown the potential for diurnal variability to influence the downstream N transfer, N form, and estimates of in‐stream N2O production. Studies in temperate stream systems have also shown diurnal changes in stream chemistry. The objectives of this study were to measure N2O fluxes and dissolved N2O concentrations from a spring‐fed temperate river to determine if diurnal cycles were occurring. The study was performed during a 72 h period, over a 180 m reach, using headspace chamber methodology. Significant diurnal cycles were observed in radiation, river temperature and chemistry including dissolved N2O‐N concentrations. These data were used to further assess the IPCC methodology and experimental methodology used. River NO3‐N and N2O‐N concentrations averaged 3.0 mg L−1 and 1.6 μg L−1, respectively, with N2O saturation reaching a maximum of 664%. The N2O‐N fluxes, measured using chamber methodology, ranged from 52 to 140 μg m−2 h−1 while fluxes predicted using the dissolved N2O concentration ranged from 13 to 25 μg m−2 h−1. The headspace chamber methodology may have enhanced the measured N2O flux and this is discussed. Diurnal cycles in N2O% saturation were not large enough to influence downstream N transfer or N form with variability in measured N2O fluxes greater and more significant than diurnal variability in N2O% saturation. The measured N2O fluxes, extrapolated over the study reach area, represented only 6 × 10−4% of the NO3‐N that passed through the study reach over a 72 h period. This is only 0.1% of the IPCC calculated flux.  相似文献   

5.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

6.
Delayed NH3 and N2O uptake by maize leaves   总被引:1,自引:1,他引:0  
  相似文献   

7.
The availability of O2 is believed to be one of the main factors regulating nitrification and denitrification and the release of NO and N2O. The availability of O2 in soil is controlled by the O2 partial pressure in the gas phase and by the moisture content in the soil. Therefore, we investigated the influence of O2 partial pressures and soil moisture contents on the NO and N2O release in a sandy and a loamy silt and differentiated between nitrification and denitrification by selective inhibition of nitrification with 10 Pa acetylene. At 60% whc (maximum water holding capacity) NO and N2O release by denitrification increased with decreasing O2 partial pressure and reached a maximum under anoxic conditions. Under anoxic conditions NO and N2O were only released by denitrification. NO and N2O release by nitrification also increased with decreasing O2 partial pressure, but reached a maximum at 0.1–0.5% O2 and then decreased again. Nitrification was the main source of NO and N2O at O2 partial pressures higher than 0.1–0.5% O2. At lower O2 partial pressures denitrification was the main source of NO and N2O. With decreasing O2 partial pressure N2O release increased more than NO release, indicating that the N2O release was more sensitive against O2 than the NO release. At ambient O2 partial pressure (20.5% O2) NO and N2O release by denitrification increased with increasing soil moisture content. The maximum NO and N2O release was observed at soil moisture contents of 65–80% whc and 100% whc, respectively. NO and N2O release by nitrification also increased with increasing soil moisture content with a maximum at 45–55% whc and 90% whc, respectively. Nitrification was the main source of NO and N2O at soil moisture contents lower than 90% whc and 80% whc, respectively. Higher soil moisture contents favoured NO and N2O release by denitrification. Soil texture had also an effect on the release of NO and N2O. The coarse-textured sandy silt released more NO than N2O compared with the fine-textured loamy silt. At high soil moisture contents (80–100% whc) the fine-textured soil showed a higher N2O release by denitrification than the coarse-textured soil. We assume that the fine-textured soil became anoxic at a lower soil moisture content than the coarse-textured soil. In conclusion, the effects of O2 partial pressure, soil moisture and soil texture were consistent with the theory that denitrification increasingly contributes to the release of NO and in particular N2O when conditions for soil microorganisms become increasingly anoxic.  相似文献   

8.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

9.
Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53–76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems.  相似文献   

10.
生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响   总被引:9,自引:0,他引:9  
高德才  张蕾  刘强  荣湘民  张玉平  田昌 《生态学报》2015,35(11):3615-3624
采用土柱室内模拟的方法,通过添加0%、0.5%、2%、4%、6%、8%生物黑炭于土壤中,测定土壤CO2、CH4、N2O排放通量,探讨生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响。结果表明:室内模拟土柱培养期内,施用生物黑炭能显著增加CO2排放,且生物黑炭添加百分数(x)与CO2累积排放量(y)之间满足线性方程:y=12.591x+235.02(R2=0.834,n=24);当生物黑炭添加量达到2%及以上时,基本抑制了CH4的排放和显著减少土壤N2O排放,并显著减少CH4和N2O的综合温室效应,当其达到4%以上时,CH4和N2O的综合温室效应降幅更大并趋于稳定,但施用少量生物黑炭(0.5%)可显著促进N2O排放,对减少CH4和N2O综合温室效应并无明显效果。生物黑炭表观分解率随其添加量的增加逐渐减少,生物黑炭添加比例越高,积累于土壤中的碳越多,从投入生物黑炭量与固碳量和减排比角度综合考虑,农业生产中推荐生物黑炭施用量为20 t/hm2,其固碳减排效果俱佳。  相似文献   

11.
小叶章生态系统根际土壤微生物及CO2、CH4、N2O动态   总被引:3,自引:0,他引:3  
徐小锋  宋长春  宋霞 《生态学报》2005,25(1):182-187
研究了培养 4 5 d的小叶章根际土壤微生物和二氧化碳 ,甲烷及氧化亚氮产生与消耗之间的关系。结果表明好氧微生物与厌氧微生物的空间分布与甲烷 ,二氧化碳及氧化亚氮的产生和氧化有着密切的关系。好氧微生物与甲烷产生呈负相关 ,与二氧化碳和氧化亚氮的产生呈正相关关系。厌氧微生物与甲烷的产生呈正相关 ,与二氧化碳和氧化亚氮的产生呈负相关关系  相似文献   

12.
Aim Agroforestry systems incorporating N‐fixing trees have been shown to be socially beneficial and are thought to be environmentally friendly, both enriching and stabilizing soil. However, the effect of such systems on the emissions of the important greenhouse gas nitrous oxide (N2O) and the tropospheric ozone precursor nitric oxide (NO) is largely unknown. Location Soil was collected from the research plots of Institut Sénégalais de Recherches Agricoles at Bandia and Bambey, Senegal, West Africa, and from neighbouring farmers’ fields. Trace gas flux measurements and chemical analysis of the soil were carried out at the Centre for Ecology and Hydrology (CEH), Edinburgh, UK. Methods Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured following simulated rainfall events (10 and 20 mm equivalents) from repacked soil cores collected under two tree species (Acacia raddiana) and Eucalyptus camaldulensis) in each of two provenance trails. In addition, soil samples were collected in local fields growing peanut (Arachis hypogaea) and Sorghum (Sorghum vulgare), close to the species trials in Bambey. NO was measured using a flow through system and was analysed by chemiluminescence. Nitrous oxide was measured from the repacked soil core headspace and was analysed by electron capture gas chromatography. Soil mineral N was extracted with KCl and analysed by colorimetric methods on separate soil columns. Results Light rainfall, which increased the gravimetric soil moisture content to 20%, stimulated an increase in NO emission but there was no detectable N2O emission. A heavy rainfall event, which increased the gravimetric soil moisture to 30%, stimulated N2O emission with a subsequent peak in NO emissions when the soils became drier. Soil collected under the N‐fixing tree species emitted significantly more N2O than soil collected under the N‐fixing crop species (P < 0.01). NO and N2O emissions significantly correlated with soil available N (NH4 and NO3) (P < 0.05). Main conclusions Rainfall intensity, supply of mineral N from organic matter and N fixation were the prime drivers of NO and N2O emissions from seasonally dry tropical soils. The improved soil fertility underneath the trees provided a larger pool of mineral N and yielded larger rates of NO and N2O emissions.  相似文献   

13.
SUMMARY 1. The effects of increasing CO2 and nitrogen loading and of a change in water table and temperature on littoral CH4, N2O and CO2 fluxes were studied in a glasshouse experiment with intact sediment cores including vegetation (mainly sedges), taken from a boreal eutrophic lake in Finland. Sediments with the water table held at a level of 0 or at ?15 cm were incubated in an atmosphere of 360 or 720 p.p.m. CO2 for 18 weeks. The experiment included fertilisation with NO3 and NH4+ (to a total 3 g N m?2). 2. Changes in the water table and temperature strongly regulated sediment CH4 and cCO2 fluxes (community CO2 release), but did not affect N2O emissions. Increase in the water table increased CH4 emissions but reduced cCO2 release, while increase in temperature increased emissions of both CO2 and CH4. 3. The raised CO2 increased carbon turnover in the sediments, such that cCO2 release was increased by 16–26%. However, CH4 fluxes were not significantly affected by raised CO2, although CH4 production potential (at 22 °C) of the sediments incubated at high CO2 was increased. In the boreal region, littoral CH4 production is more likely to be limited by temperature than by the availability of carbon. Raised CO2 did not affect N2O production by denitrification, indicating that this process was not carbon limited. 4. A low availability of NO3 did severely limit N2O production. The NO3 addition caused up to a 100‐fold increase in the fluxes of N2O. The NH4+ addition did not increase N2O fluxes, indicating low nitrification capacity in the sediments.  相似文献   

14.
In this study, we analyze the impact of fertilizer‐ and manure‐induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first‐generation biofuels (also taking account of other GHG emissions during the entire life cycle). We calculate the nitrous oxide (N2O) emissions by applying a statistical model that uses spatial data on climate and soil. For the land use that is assumed to be replaced by energy crop production (the ‘reference land‐use system’), we explore a variety of options, the most important of which are cropland for food production, grassland, and natural vegetation. Calculations are also done in the case that emissions due to energy crop production are fully additional and thus no reference is considered. The results are combined with data on other emissions due to biofuels production that are derived from existing studies, resulting in total GHG emission reduction potentials for major biofuels compared with conventional fuels. The results show that N2O emissions can have an important impact on the overall GHG balance of biofuels, though there are large uncertainties. The most important ones are those in the statistical model and the GHG emissions not related to land use. Ethanol produced from sugar cane and sugar beet are relatively robust GHG savers: these biofuels change the GHG emissions by −103% to −60% (sugar cane) and −58% to −17% (sugar beet), compared with conventional transportation fuels and depending on the reference land‐use system that is considered. The use of diesel from palm fruit also results in a relatively constant and substantial change of the GHG emissions by −75% to −39%. For corn and wheat ethanol, the figures are −38% to 11% and −107% to 53%, respectively. Rapeseed diesel changes the GHG emissions by −81% to 72% and soybean diesel by −111% to 44%. Optimized crop management, which involves the use of state‐of‐the‐art agricultural technologies combined with an optimized fertilization regime and the use of nitrification inhibitors, can reduce N2O emissions substantially and change the GHG emissions by up to −135 percent points (pp) compared with conventional management. However, the uncertainties in the statistical N2O emission model and in the data on non‐land‐use GHG emissions due to biofuels production are large; they can change the GHG emission reduction by between −152 and 87 pp.  相似文献   

15.
The effect of the water table on nitrous oxide (N2O) fluxes from peat profiles representing boreal peatlands of differing nutrient status was studied in the laboratory. Lowering of the water table in peat monoliths taken from two natural waterlogged peatlands for 14 weeks in a greenhouse at 20 °C increased the fluxes of N2O, an effect that was enhanced further by incubation in the dark. Raising of the water table in monoliths from two drained and forested peatlands caused cessation of the N2O fluxes from the drained peats, which had previously been sources of N2O. It is known that N2O fluxes have increased in peatlands drained several decades ago. The results suggest that it is not necessary for the water table to be lowered for several years to change a boreal peatland from a N2O sink to a source of the gas. In addition to the draining of peatlands, climate change can be expected to lower ground water levels during the summertime in the boreal zone, and this could cause marked changes in N2O fluxes from boreal peatlands by enhancing the microbial processes involved in nitrogen transformations.  相似文献   

16.
Atmospheric concentrations of the greenhouse gas nitrous oxide (N2O) have continued to rise since the advent of the industrial era, largely because of the increase in agricultural land use. The urine deposited by grazing ruminant animals is a major global source of agricultural N2O. With the first commitment period for reducing greenhouse gas emissions under the Kyoto Protocol now underway, mitigation options for ruminant urine N2O emissions are urgently needed. Recent studies showed that increasing the urinary concentration of the minor urine constituent hippuric acid resulted in reduced emissions of N2O from a sandy soil treated with synthetic bovine urine, due to a reduction in denitrification. A similar effect was seen when benzoic acid, a product of hippuric acid hydrolysis, was used. This current laboratory experiment aimed to investigate these effects using real cow urine for the first time. Increased concentrations of hippuric acid or benzoic acid in the urine led to reduction of N2O emissions by 65% (from 17% to <6% N applied), with no difference between the two acid treatments. Ammonia volatilization did not increase significantly with increased hippuric acid or benzoic acid concentrations in the urine applied. Therefore, there was a net reduction in gaseous N loss from the soil with higher urinary concentrations of both hippuric acid and benzoic acid. The results show that elevating hippuric acid in the urine had a marked negative effect on both nitrification and denitrification rates and on subsequent N2O fluxes. This study indicates the potential for developing a novel mitigation strategy based on manipulation of urine composition through ruminant diet.  相似文献   

17.
An automated closed‐chamber system was developed to measure N2O fluxes in the field. It was deployed at two N‐fertilized grassland sites in two successive years, together with replicated manual chambers, to investigate the spatial and temporal variability in fluxes, and the likely impact of sampling frequency on cumulative flux values. The automated system provided flux data at 8‐h intervals, while manual sampling was conducted at intervals of 3–7 days. The autochambers showed fluctuations in emissions not detected by manual sampling. However, integrated flux values based on the more intensive measurements were on average no more than 14% greater than those based on data from the autochambers that were obtained at the same time as manual sampling. This difference was not significant and well within the spatial variability determined with manual chambers. If daily sampling intervals were used immediately after fertilization, the agreement was closer still, increasing the confidence that can be placed in manual procedures. Diurnal variations in temperature and flux were small, and results from sampling at mid‐day were not significantly different from those based on early morning or evening sampling. Where diurnal fluctuations in temperature and flux are likely to be much larger, the autochamber/sampler system could prove very useful to quantify the effect.  相似文献   

18.
Aim Savannas and seasonally‐dry ecosystems cover a significant part of the world's land surface. If undisturbed, these ecosystems might be expected to show a net uptake of methane (CH4) and a limited emission of nitrous oxide (N2O). Land management has the potential to change dramatically the characteristics and gas exchange of ecosystems. The present work investigates the contribution of warm climate seasonally‐dry ecosystems to the atmospheric concentration of nitrous oxide and methane, and analyses the impact of land‐use change on N2O and CH4 fluxes from the ecosystems in question. Location Flux data reviewed here were collected from the literature; they come from savannas and seasonally‐dry ecosystems in warm climatic regions, including South America, India, Australasia and Mediterranean areas. Methods Data on gas fluxes were collected from the literature. Two factors were considered as determinants of the variation in gas fluxes: land management and season. Land management was grouped into: (1) control, (2) ‘burned only’ and (3) managed ecosystems. The season was categorized as dry or wet. In order to avoid the possibility that the influence of soil properties on gas fluxes might confound any differences caused by land management, sites were grouped in homogeneous clusters on the basis of soil properties, using multivariate analyses. Inter‐ and intra‐cluster analysis of gas fluxes were performed, taking into account the effects of season, land management and main vegetation types. Results Soils were often acid and nutrient‐poor, with low water retention. N2O emissions were generally very low (median flux 0.32 mg N2O m?2 day?1), and no significant differences were observed between woodland savannas and managed savannas. The highest fluxes (up to 12.9 mg N2O m?2 day?1) were those on relatively fertile soils with high air‐filled porosity and water retention. The effect of season on N2O production was evident only when sites were separated in homogeneous groups on the basis of soil properties. CH4 fluxes varied over a wide range (?22.9 to 3.15 mg CH4 m?2 day?1, where the negative sign denotes removal of gas from the atmosphere), with an annual average daily flux of ?0.48 ± 0.96 (SD) mg CH4 m?2 day?1 in undisturbed (control) sites. Land‐use change dramatically reduced this CH4 sink. Managed sites were weak sinks of CH4 in the dry season and became sources of CH4 in the wet season. This was particularly evident for pastures. Burning alone did not reduce soil net CH4 oxidation, but decreased N2O production. Main conclusions Despite the low potential for N2O production, both in natural and managed conditions, tropical seasonally‐dry ecosystems represent a significant source of N2O (4.4 Tg N2O year?1) on a global scale, as a consequence of the large area they occupy. The same environments represent a potential CH4 sink of 5.17 Tg CH4 year?1. However, assuming that c. 30% of the tropical land is converted to different uses, the sink would be reduced to 3.2 Tg CH4 year?1. The limited information on fluxes from Mediterranean ecosystems does not allow a meaningful scaling up.  相似文献   

19.
The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3‐year, high‐resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0–292 kg N ha?1) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O‐N ha?1 day?1) at levels of N addition to 101 kg N ha?1, where grain yields were maximized, after which fluxes more than doubled (to >50 g N2O‐N ha?1 day?1). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs.  相似文献   

20.
Abstract A stainless steel cylinder filled with soil was flushed upstream with a H2/CO2/air mixture. The consequence was a strong enrichment of the aerobic, autotrophic hydrogen-oxidising microflora, which reached densities enabling them to oxidize 84.5 ml H2· dm−2· h−1 in the first 25-cm layer. H2 concentration profiles, hydrogen uptake activity and cell numbers correlated well with each other. Most of the organisms isolated were dinitrogen fixers. Thus, soils containing hydrogen-oxidising bacteria may act as a biological shield between H2-rich environments and air, and may be utilized as biofilters, e.g., in the waste-processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号