首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A unique peptide sequence of HGGHHG screening from a combinatorial synthetic peptide library showed a good chelating ability to bind a transition metal on a chip better than hexa-His peptide. It was directly conjugated with a His-Tagged proteins onto a chip in a mild aqueous solution and can be used this chip as a high throughput technique for protein array in order to detect and purify the His-Tagged proteins.  相似文献   

2.
The separation of three sets of standard protein mixtures on a high-performance immobilized metal ion affinity chromatography (HP-IMAC) column by elution with linear gradients of imidazole is described. The affinity of the test proteins for the immobilized metal ions follows the order Cu2+ greater than Ni2+ greater than Zn2+. The iminodiacetic acid-Cu2+ column gives the best resolution of all three protein mixtures and is the only immobilized metal ion column that can be used for elution of absorbed proteins with a decreasing pH gradient. An application of HP-IMAC for the separation of monoclonal IgG from mouse ascites fluid is also outlined. This versatile separation method is thus suitable for both analytical and preparative separations of proteins and peptides resulting in high recoveries and good reproducibility. The leakage of immobilized metal ions from the TSK gel chelate-5PW is apparent if the column is eluted by buffers containing low concentrations of (i) glycine or (ii) primary amines at round neutral pH. Considerable amounts of immobilized Zn2+ and Ni2+ ions also leak from the column by washing with buffers of pH 4.5 or lower. However, all three immobilized metal ions are stable toward exposure to low concentrations of imidazole (up to 50 mM) in phosphate buffers between pH 6.5 and 8.0. Adsorbed proteins could thus be eluted conveniently by using linear gradients of imidazole to give reproducible results. Moreover, this elution procedure made it possible to use the IMAC columns for repeated runs without the need for regeneration and recharging of the columns with fresh metal ions after each use.  相似文献   

3.
The effects of mono- and divalent metal ions on the DNA gyrase B subunit, on its 43 kDa and 47 kDa domains, and on two mutants in the Toprim domain (D498A and D500C) were investigated by means of circular dichroism and protein melting experiments. Both types of metal ion, with the notable exception of Mn2+, did not affect the conformational properties of the enzyme subunit at room temperature, but were able to produce selective and differential effects on protein stability. In particular, monovalent (K+) ions increased the stability of the gyrase B structure, whereas destabilising effects were most prominent using Mn2+ as the metal ion. Ca2+ and Mg2+ produced comparable changes in the gyrase B melting profile. Additionally, we found that monovalent (K+) ions were more effective in the 43 kDa N-terminal domain where ATP binding occurs, whereas divalent ions caused large modifications in the conformational stability of the 47 kDa C-terminal domain. Our results on gyrase B mutants indicate that D498 interacts with Mn2+, whereas it has little effect on the binding of the other ions tested. A D500C mutation, in contrast, effectively impairs Mg2+ affinity, suggesting effective contacts between this ion and D500 in the wild-type enzyme. Hence, the sites of metal ion complexation within the Toprim domain are modulated by the nature of the ion species. These results suggest a double role played by metal ions in the catalytic steps involving DNA gyrase B. One has to do with direct involvement of cations complexed to the Toprim domain in the DNA cutting-rejoining process, the other, until now overlooked, is connected to the dramatic changes in protein flexibility produced by ion binding, which reduces the energy required for the huge conformational changes essential for the catalytic cycle to occur.  相似文献   

4.
Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co2+, Cd2+, Cu2+, Ni2+ and Mn2+. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn2+. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His3 coordination that is imposed at the protein site.  相似文献   

5.
A new metal ion chelator has been developed for use in the immobilised metal ion affinity chromatography (IMAC) of proteins. The aromatic tridentate ligand 2,6-diaminomethylpyridine (bisampyr), 1, was prepared as the dihydrochloride salt, via a two step synthesis from 2,6-pyridinedimethanol, 2, and immobilised onto Sepharose CL-4B through an epoxide coupling procedure. The resulting sorbent was chelated with Cu2+ ions to a density of 420 micromol Cu2+ ions per g gel and then characterised by frontal analysis using the protein, horse heart myoglobin (HMYO), at pH 7.0 and 9.0. From the resulting adsorption isotherms, the adsorption capacity, qm, for HMYO at pH 7.0 and pH 9.0 with the immobilised Cu2+-bisampyr Sepharose sorbent was found to be 1.27 micromol protein/g gel and 1.43 micromol protein/g gel, whilst the corresponding dissociation constants, K(D)s, were 18.0 x 10(-6) M and 16.0 x 10(-6) M respectively. The results confirm that the HMYO-Cu2+-bisampyr complex had similar stability at these pH values. This finding is in contrast with the situation observed with some other commonly used IMAC chelating ligates such as Cu2+-iminodiacetic acid (Cu2+-IDA) or Cu2+-nitrilotriacetic acid (Cu2+-NTA). Using human serum proteins, the interactive properties of the immobilised Cu2+-bisampyr Sepharose sorbent were further characterised at pH 5.0, 7.0 and 9.0 with specific reference to the binding behaviour of albumin, transferrin, and alpha2-macroglobulin.  相似文献   

6.
The formaldehyde-morpholine method for the conversion of gamma-carboxyglutamyl (Gla) residues to gamma-methyleneglutamyl (gamma-MGlu) residues has been applied to the modification of bovine prothrombin fragment 1. In the absence of Tb3+ ions or at Tb3+ ion concentrations of 2 Km app and 25 Km app the action of 10,000-fold molar excess of formaldehyde and morpholine, pH 5.0, converts the 10 Gla residues of the protein into 10 gamma-MGlu residues. Modification of the protein using the same conditions but increasing the Tb3+ concentration to 100 Km app provided a homogeneous protein containing 3 gamma-MGlu and 7 Gla residues, bovine 3 gamma-MGlu-fragment 1. The modified protein binds the same number of Ca2+ ions (6-7) as bovine fragment 1. However, the positive cooperatively associated with Ca2+ binding is abolished and the overall affinity for Ca2+ ions is reduced. Fluorescence titrations of 3 gamma-MGlu-fragment 1 using either Ca2+ or Mg2+ ions indicate that the modified protein retains a fluorescence quenching behavior similar to that of the native protein. The modified protein does not bind to phosphatidylserine/phosphatidylcholine vesicles in the presence of Ca2+ ions. Thus the metal ion-induced fluorescence transition exhibited by the bovine protein appears to be a necessary but not sufficient condition for phospholipid binding.  相似文献   

7.
目的:制备了壳聚糖Zn2+固定化亲和层析填料,并对其性能进行了研究。方法:采用反相悬浮法制备了交联壳聚糖;再以环氧氯丙烷为活化剂,乙二胺为螯合配基,制备了固定化亲和层析填料;表征了其有效粒径以及均匀系数、含水量、失重率、氨基含量、骨架密度、堆积密度以及孔度值。从时间、加入ZnCl2的浓度、温度、pH方面对Zn2+固定化条件进行了优选,并确定了Zn2+的固定化量。含组氨酸标签的乙醛脱氢酶粗酶液,经硫酸铵盐析后,考察了壳聚糖Zn2+固定化亲和层析填料的亲和性能。结果:制备的填料有效粒径为105μm;均匀系数为1.46;含水量为58.03%;失重率为85.43%;氨基含量为9.20mmol/g;骨架密度为1.217 8g/ml;堆积密度为0.843 2g/ml;孔度值为36.40%。固定化Zn2+的最佳条件是:时间3 h、加入ZnCl2溶液浓度0.1mol/L、温度28℃、pH 5.5;且此条件下,亲和层析填料中Zn2+固定化量为3.35mmol/g。壳聚糖Zn2+固定化亲和层析填料对乙醛脱氢酶的亲和性能为4.14IU/g(干重)。结论:制备了壳聚糖Zn2+固定化亲和层析填料,可用于带有组氨酸标签重组蛋白的快速分离与纯化。  相似文献   

8.
Lu ZJ  Markham GD 《Biochemistry》2007,46(27):8172-8180
S-Adenosylmethionine decarboxylase from Escherichia coli is a pyruvoyl cofactor-containing enzyme that requires a metal cation for activity. We have found that the enzyme is activated by cations of varying charge and ionic radius, such as Li+, A13+, Tb3+, and Eu3+, as well as the divalent cations Mg2+, Mn2+, and Ca2+. All of the activating cations provide kcat values within 30-fold of one another, showing that the charge of the cation does not greatly influence the rate-limiting step for decarboxylase turnover. Cation concentrations for half-maximal activation decrease by >100-fold with each increment of increase in the cation charge, ranging from approximately 300 mM with Li+ to approximately 2 microM with trivalent lanthanide ions. The cation affinity is related to the charge/radius ratio of the ion for those ions with exchangeable first coordination sphere ligands. The exchange-inert cation Co(NH3)63+ activates in the presence of excess EDTA (and NH4+ does not activate), indicating that direct metal coordination to the protein or substrate is not required for activation. The binding of metal ions (monitored by changes in the protein tryptophan fluorescence) and enzyme activation are both cooperative with Hill coefficients as large as 4, the active site stoichiometry of this (alphabeta)4 enzyme. The Hill coefficients for Mg2+ binding and activation increase from 1 to approximately 4 as the KCl concentration increases, which is also observed with NaCl or KNO3; neither Na+ nor K+ activates the enzyme. The single tryptophan in the protein is located 16 residues from the carboxyl terminus of the pyruvoyl-containing alpha chain, in a 70-residue segment that is not present in metal ion independent AdoMet decarboxylases from other organisms. The results are consistent with allosteric metal ion activation of the enzyme, congruent with the role of the putrescine activator of the mammalian AdoMet decarboxylase.  相似文献   

9.
Sun L  Harris ME 《RNA (New York, N.Y.)》2007,13(9):1505-1515
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.  相似文献   

10.
Various immobilized metal ions affinity membranes (IMAMs) were prepared from the regenerated cellulose membrane (RC membrane) and chelated with various metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The D-hydantoin-hydrolyzing enzyme (DHTase) harboring a poly-His tagged residue was used as a model protein to be immobilized on the prepared IMAMs through the direct metal–protein interaction forces. The adsorption isotherm and the kinetic parameters Vmax, Km,app of DHTase on IMAMs were studied. The cobalt ions chelated IMAM (Co-IMAM) was found to yield the highest specific activity of DHTase. Under the immobilization condition, the cobalt ion chelated amount was 161.4 ± 4.7 μmol/disk with a DHTase activity of 4.1 ± 0.1 U/disk. As compared to the free DHTase, the immobilized DHTase membrane could achieve a broader pH tolerance and higher thermal stability. In addition, 98% of the residual activity could be retained for 7-times repeated use. Only little activity loss was observed within 36-day storage at 4 °C. This is the first report concerning about using cobalt ion as the effective chelated metal ion for simultaneous purification and immobilization operation.  相似文献   

11.
The effects of the divalent alkaline-earth metal ions (Ca2+ and Mg2+) on the substrate binding affinity, spin-state transition at the heme active site, conformational properties as well as the stability of the active form of cytochrome P450cam (CYP 101) have been investigated using various spectroscopic and kinetic methods. The divalent cations were found to have two types of effects on the enzyme. At the initial stage the alkaline-earth metal ion facilitated enhanced binding of the substrate and formation of the high-spin form of the heme active center of the enzyme compared to that in absence of any metal ion. However, analogous to many other mono-valent metal ions, the alkaline-earth metal ions were also less efficient than K+ in promoting the substrate binding and spin-transition properties of the enzyme. The auxiliary metal ions were shown to cause small but distinct change in the circular dichroism spectra of the substrate-free enzyme in the visible region, indicating that the tertiary structure around the heme was perturbed on binding of the auxiliary metal ion to the enzyme. The effect of the auxiliary metal ion was found to be more prominent in the WT enzyme compared to the Y96F mutant of P450cam suggesting that the Tyr 96 residue plays an important role in mediating the effects of the auxiliary metal ions to the active site of the enzyme. At the second stage of interaction, the alkaline-earth metal ions were found to slowly convert the enzyme into an inactive P420 form, which could be reversibly re-activated by addition of KCl. The results have been discussed in the light of understanding the mechanism of inactivation of certain mammalian P450 enzymes by these alkaline-earth metal ions.  相似文献   

12.
Thermodynamic analysis of calcium ions binding to human growth hormone (hGH) was done at 27 °C in NaCl solution, 50 mM, using different techniques. The binding isotherm for hGH-Ca2+ was obtained by two techniques of ionmetry, using a Ca2+-selective membrane electrode, and isothermal titration calorimetry. Results obtained by two ionmetric and calorimetric methods are in good agreement. There is a set of three identical and non-interacting binding sites for calcium ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 52 μM and −17.4 kJ/mol, respectively. Temperature scanning UV–vis spectroscopy was applied to elucidate the effect of Ca2+ binding on the protein stability, and circular dichroism (CD) spectroscopy was used to show the structural change of hGH due to the metal ion interaction. Calcium ions binding increase the protein thermal stability by increasing of the alpha helix content as well as decreasing of both beta and random coil structures.  相似文献   

13.
A metal-chelating piezoelectric (PZ) chip for direct detection and controlled immobilization of polyHis-tagged proteins has been demonstrated. The chip was prepared by covalently binding a hydrogel matrix complex of oxidized dextran and nitrilotriacetic acid (NTA) ligand onto an activated alkanethiol-modified PZ crystal. The resulting chip effectively captured Ni2+ ions onto its NTA surface, as disclosed by the resonant frequency shift of the crystal and an X-ray photoelectron spectroscopy analysis. The real-time frequency analysis revealed that the bare NTA chip was nonfouling, regenerable, and highly reusable during continuous repetitive injections of ion solutions and binding proteins. In addition, the chip displayed good long-term reusability and storage stability. The individual binding studies of a polyHis-tagged glutathione-S-transferase and its native untagged form on various metal-charged chips revealed that Co2+, Cu2+, and Ni2+ ions each had different immobilization ability on the NTA surface, as well as their binding ability and selectivity with the tagged protein. As a result, the tagged protein immobilized on the Ni2+-charged chip can actively be bound with its antibody and substrate. Further, the quantitative analyses of the tagged protein in crude cell lysate with a single Ni2+-charged chip and of its substrate with a protein-coated chip were also successfully demonstrated. Therefore, this study initiates the possibilities of oriented, reversible, and universal immobilization of any polyHis-tagged protein and its functional study using a real-time PZ biosensor.  相似文献   

14.
On the coordination properties of Eu3+ bound to tRNA   总被引:3,自引:0,他引:3  
The luminescence properties of Eu3+ have been used to investigate the binding and coordination properties of the ion with tRNA, as an attempt to resolve the discussion of whether metal ions bind to tRNA in solution only by Debye-Hückel screening, or whether direct coordination to specific sites may occur. Binding studies with Escherichia coli tRNAmet/f (taking advantage of 4-thiouracil-sensitized Eu3+ emission) distinguish three classes of binding affinities. Two of these are single sites with affinities approx. 10(4) and approx. 10(3) tighter than the nonspecific affinity of Eu3+ for native DNA. Mg2+ competes for binding at both these sites. Measurement of the lifetime and excitation spectrum of Eu3+ bound to the highest affinity site shows that the ion has two to five non-phosphate ligands in its inner coordination sphere. The existence of this coordinated site demonstrates that electrostatic screening is not the only mechanism for metal ion interaction with tRNA. The coordination properties of the high-affinity Eu3+ site do not agree with the properties of any of the metal ion sites found in the two tRNAphe crystal forms. Possible reasons for this discrepancy are discussed; it may be that ions bind differently to isolated molecules in solution than to molecules packed in a crystal lattice.  相似文献   

15.
EDTA treatment of intestinal brush border membranes (BBM) and epithelial cell supernatant completely inhibited alkaline phosphatase (AP) activity in suckling rat intestine. AP activity was fully regained upon dialysis of the preparations against Zn2+ and to a lesser extent against Co2+, Ca2+ and Mn2+ ions. Other metal ions (Cd2+ and Mg2+) tested were essentially ineffective in restoring the enzyme activity. Considerable differences were observed in kinetic characteristics of the membrane-bound and soluble AP activities in response to various metal ions. There were apparent differences in Km, Vmax, energy of activation (Ea) and thermal stability of the soluble and membrane-bound AP activities, after metal ion substitutions. Nearly 35% AP activity was solubilized on sodium dodecyl sulphate treatment of brush borders (membrane protein: detergent ratio 1:3; w/w). Dialysis of detergent solubilized BBM against different metal ions reconstituted AP activity in the particulate fraction: the order of effectiveness was Zn greater than Ca greater than Mn greater than Co. The kinetic properties of the reconstituted AP were essentially similar to the non-integrated enzyme activity in response to various divalent metal ions examined. But there were apparent differences in Km, Vmax, Ea and thermal stability of the reconstituted AP activity compared to native brush border enzyme. The results suggest the unique requirement of Zn ions for stability and catalytic activity of the soluble and membrane-bound AP activity in suckling rat intestine.  相似文献   

16.
We report herein, for the first time, that Europium ion (Eu3+) binds to the “apo” form of Escherichia coli methionine aminopeptidase (EcMetAP), and such binding results in the activation of the enzyme as well as enhancement in the luminescence intensity of the metal ion. Due to competitive displacement of the enzyme-bound Eu3+ by different metal ions, we could determine the binding affinities of both “activating” and “non-activating” metal ions for the enzyme via fluorescence spectroscopy. The experimental data revealed that among all metal ions, Fe2+ exhibited the highest binding affinity for the enzyme, supporting the notion that it serves as the physiological metal ion for the enzyme. However, the enzyme-metal binding data did not adhere to the Irving-William series. On accounting for the binding affinity vis a vis the catalytic efficiency of the enzyme for different metal ions, it appears evident that that the “coordination states” and the relative softness” of metal ions are the major determinants in facilitating the EcMetAP catalyzed reaction.  相似文献   

17.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   

18.
The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the rangepH 5.5–8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized M n +-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metalion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surfaceexposed aspartic and glutamic acid residues on the protein with the immobilized M n +-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number and extent of clustering of the surfaceaccessible aspartic and glutamic acid residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.Abbreviations IDA iminodiacetic acid - IDA-Mn+ iminodiacetic acid chelated to metal ion - IMAC immobilized metal affinity chromatography - DHCC dog heart cytochrome c - HHCC horse heart cytochrome c, THCC, tuna heart cytochrome c - HMYO horse skeletal muscle myoglobin - SMYO sheep skeletal muscle myoglobin - HEWL hen egg white lysozyme  相似文献   

19.
The addition of Mn2+, Zn2+, Co2+, Ca2+ or Pb2+ to apo-concanavalin A results in a slow conformational conversion of the protein to the active saccharide binding form. The rates of conversion are dependent upon the sample pH and identity of the ions which occupy the native transition metal and calcium ion sites yet the affinity of each metalloform for the fluorescent sugar, 4-methylumbelliferyl-α-D-mannopyranoside, is independent of these same parameters (above pH 5.6). EDTA quickly removes all metal ions from the active Mn2+ or Co2+-concanavalin A samples leaving a metastable metal free structure which retains its high saccharide affinity for several hours at room temperature. This form of apo-concanavalin A and the metallized derivatives have equally high saccharide binding affinities in 1M NaCL but the former dramatically loses its sugar affinity as the ionic strength is lowered.  相似文献   

20.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号