首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Power spectra of short-term (less than 1 s) EEG-reactions (in the frequency band of 1-225 Hz) were studied in dogs in the course of instrumental food conditioning. These reactions were observed in different areas of the cortex in response to positive and differentiated conditioned stimuli. Regional features between the spectra were found both in the power level and frequency structure. The power of the reactions in the visual and parietal areas of the left hemisphere was higher than in the motor areas. Power spectra of reactions to differentiated stimuli were significantly lower than the spectra of reactions to positive stimuli mainly owing to the high-frequency components (80-225 Hz). In these both cases, prestimulus power spectra did not differ. The frequency structure of corresponding EEG-reactions consisted of individual spectral peaks, mainly both gamma (30-80 Hz) and higher-frequency (80-225 Hz) bands.  相似文献   

2.
Power spectral (in the broad frequency band of 1-225 Hz) of short-term (less than 1 s) EEG reactions were studied in dogs in the course of instrumental food conditioning. These reactions appeared in different cortical areas in response to differentiating signals under conditions of both adequate and erroneous responses. The EEG power of such reactions was several times lower as compared to responses to positive signals, mainly, at the expense of the frequencies in the band of 90-225 Hz (the power of which was higher than that of the traditional band of 1-30 Hz and the gamma band of 30-80 Hz). The frequency composition of EEG reactions accompanying adequate responses was defined, mainly, by discrete subgroups of high-frequency components. During erroneous responses, the discrete structure of the corresponding EEG reactions was broken.  相似文献   

3.
Features of EEG pattern during verbal creative thinking depending on experimental instruction were studied in men and women. Spectral power density was analyzed in six frequency bands (4-30 Hz). Performance of a creative task produced an increase in the power of theta (4-6 Hz) and beta2 (20-40 Hz) components and decrease in the power of alpha (8-13 Hz) and betal (13-20 Hz). Changes in the alpha and betal bands were observed, predominantly, in the posterior areas, whereas power of the thetal and beta2 bands increased in the anterior areas. Independently of instruction, women demonstrated greater synchronization in the theta1 band than men, whereas in men the desynchronization in the alpha2 band (10-13 Hz) was more pronounced. When the subjects were instructed to create original sentences, a widespread decrease in the EEG power was observed in the band of 8-30 Hz as compared to instruction "to create sentences". Thus, the instruction-related changes in EEG power were not gender-specific. They may reflect neural activity mediating selective attention.  相似文献   

4.

Background

Thalamocortical EEG rhythms in gamma (30-80 Hz) and high-gamma (80-200 Hz) ranges have been linked to arousal and conscious processes. To test the hypothesis that general anesthetics attenuate these rhythms, we characterized the concentration-effect relationship of propofol on the spectral power of these rhythms. In view of the ongoing debate about cortex versus thalamus as the primary site of anesthetic action for unconsciousness, we also compared the relative sensitivity of cortex and thalamus to this effect propofol.

Methods

Adult male Long-Evans rats were chronically implanted with electrodes in somatosensory (barrel) cortex and ventroposteromedial thalamus. Propofol was delivered by a computer-controlled infusion using real-time pharmacokinetic modeling to obtain the desired plasma concentration. Spectral power was assessed during baseline, at four stable propofol plasma-concentrations (0, 3,6,9,12 μg/ml) and during recovery over four frequency ranges (30-50, 51-75, 76-125, 126-200 Hz). Unconsciousness was defined as complete loss of righting reflex. Multiple regression was used to model the change of power (after logarithmic transformation) as a function of propofol concentration and recording site.

Results

Unconsciousness occurred at the 9 μg/ml concentration in all animals. Propofol caused a robust linear concentration-dependent attenuation of cortical power in the 76-200 Hz range and of thalamic power in the 51-200 Hz range. In all instances the concentration-effect slope for the thalamus was markedly steeper than for the cortex. Furthermore the lowest concentration causing unconsciousness significantly reduced cortical power in the 126-200 Hz range and thalamic power in the 51-200 Hz range.

Conclusions

Propofol causes a concentration-dependent attenuation of the power of thalamocortical rhythms in the 51-200 Hz range and this effect is far more pronounced for the thalamus, where the attenuation provides a robust correlate of the hypnotic action of propofol.  相似文献   

5.
The effects of modulated radio frequency fields on mammalian EEGs were investigated using acute and chronic irradiations at non-thermal level. The EEG signals were computer processed to obtain power spectra. Rabbits were exposed to the field for 2 h a day for 6 weeks at 1-10 MHz (15 Hz modulation) at the level of 0.5-1 kV/M. Silver electrodes placed on the skull surface were used for recording of the EEG. Usually they were removed immediately after initial recordings of the EEG and reinserted before the final and intermediate EEG recordings. With this arrangement, modulated RF fields produced a change in EEG patterns by enhancing the low frequency components and decreasing high frequency activities. On the other hand, acute irradiations did not produce noticeable changes in the EEG at the level of 0.5-1 kV/M (1-30 MHz, 60 Hz modulation) as long as the use of intracranial electrodes was avoided.  相似文献   

6.
The state of selective attention was studied in dogs in the course of instrumental conditioning. During interstimuli intervals, this state was manifested in the state of strained waiting for conditioned stimuli. Electrical activity of different areas in both hemispheres was analyzed using the Fast Fourier Transformation. It was shown that in the process of development of selective attention, the high-frequency EEG components (40-200 Hz) in the motor area of the right hemisphere and the visual and parietal areas of the left hemisphere had a predominant significance over the traditional EEG frequencies of 1-30 Hz. The state of selective attention was characterized by another functional mosaic organization of the neocortical potentials.  相似文献   

7.
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.  相似文献   

8.
Schizophrenia patients exhibit well-documented visual processing deficits. One area of disruption is visual integration, the ability to form global objects from local elements. However, most studies of visual integration in schizophrenia have been conducted in the context of an active attention task, which may influence the findings. In this study we examined visual integration using electroencephalography (EEG) in a passive task to elucidate neural mechanisms associated with poor visual integration. Forty-six schizophrenia patients and 30 healthy controls had EEG recorded while passively viewing figures comprised of real, illusory, or no contours. We examined visual P100, N100, and P200 event-related potential (ERP) components, as well as neural synchronization in the gamma (30-60 Hz) band assessed by the EEG phase locking factor (PLF). The N100 was significantly larger to illusory vs. no contour, and illusory vs. real contour stimuli while the P200 was larger only to real vs. illusory stimuli; there were no significant interactions with group. Compared to controls, patients failed to show increased phase locking to illusory versus no contours between 40-60 Hz. Also, controls, but not patients, had larger PLF between 30-40 Hz when viewing real vs. illusory contours. Finally, the positive symptom factor of the BPRS was negatively correlated with PLF values between 40-60 Hz to illusory stimuli, and with PLF between 30-40 Hz to real contour stimuli. These results suggest that the pattern of results across visual processing conditions is similar in patients and controls. However, patients have deficits in neural synchronization in the gamma range during basic processing of illusory contours when attentional demand is limited.  相似文献   

9.
Fedotchev AI 《Biofizika》2001,46(1):112-117
The features of resonance phenomena in high-resolution EEG structure were analyzed for two intensities and three values of duration of exposure to 20 constant frequencies of intermittent photic stimulation in a range of 1-20 Hz with 1 Hz steps. It was shown that with a 6 s step duration, an irregular activation of multiple spectral EEG components for both light intensities occurs. With longer durations (12 and 18 s) of fixed-frequency stimulation, the EEG reactions are of resonance nature. Low-intensity flashes cause only the resonance activation of the intrinsic oscillator in the range of dominant alpha-EEG frequency. During a more intensive stimulation, the resonance EEG phenomena are observed for the whole range of stimulation frequencies. The interval of 6-12 s is supposed to be the relaxation period for a system of brain electrical activity generation. After this time, the low-intensity stimuli cause the adaptation of the system to light, whereas more intensive flashes cause more pronounced resonance EEG phenomena and physiological effects.  相似文献   

10.
1. Changes in EEG power spectrum of carp to a priming non-acoustic stimulus followed by acoustic clicks were compared to those due to acoustic clicks delivered alone. Recordings were made from the telencephalon, midbrain and medulla. Acoustic evoked potentials (AEPs) to the clicks were also recorded. 2. EEG power changes to non-acoustic stimuli occurred over the whole 1-40 Hz frequency range and were regionally specific and consistent. 3. The changes in the EEG midfrequency 12-24 Hz power spectrum to non-acoustic stimuli were significantly correlated with changes in the AEP to subsequent clicks. An elevated medullary AEP amplitude and reduced duration were correlated with increased medullary EEG power and increased midbrain AEP duration. 4. Telencephalic EEG power changes were inversely related to changes in medullary and midbrain AEP amplitude.  相似文献   

11.
To find EEG-markers of catecholaminergic activation shifts EEG power spectra of white rats were computed before and after intraperitoneal injections of propranolol, metaproterenol, haloperidol, amantadine, or isotonic sodium chloride solution. Differential spectral characteristics were undergone to factor analysis and discriminant analysis. Factors with similar structure for both catecholaminergic systems were revealed in EEG-reactions to mutually antagonistic injections and relatively specific factors as well. The leading factor of adrenotropic injections described the augmentation of the spectral power in the range of 9-16 Hz induced by propranolol and its reduction by metaproternol. Similar factor was also revealed in reactions to dopaminotropic injections with the smaller value of discriminant function coefficient. One more common feature of EEG-reactions to catecholaminergic disturbances was found to consist of the reciprocal narrow-band shifts in the theta- and delta-diapasons. The leading factor for the recognition of dopaminotropic disturbances described the increase of EEG power in the band of 19-30 Hz at activation and its reduction at suppression of the transmitter system.  相似文献   

12.
Prestimulus EEG power spectra from different cortical areas in frequency band 1-60 Hz were studied at a stage of formation of the cognitive set to facial expression. Diversity of individual power spectra of baseline EEGs, especially in gamma frequency band 41-60 Hz makes averaging individual spectra impossible. The authors pioneered in finding that, in prestimulus periods, EEG frequencies 41-60 Hz were of higher information value than frequencies 1-20 and 21-40 Hz. The highest power of the gamma frequencies was revealed in the frontal areas of the right hemisphere in subjects with a plastic set. In the group with a rigid set, gamma frequencies of high power prevailed in the posterotemporal and occipital areas of the left hemisphere.  相似文献   

13.
The work is a logical continuation of previous studies (analysis of the background electrical activity in the band 1-100 Hz in interstimulus intervals in the process of lever pressing alimentary conditioning in dogs) and it is dedicated to correlation-spectral analysis of prestimulus periods and EEG-reactions to conditioned stimuli, previous to conditioned lever pressing. Visually the EEG reactions present discharges of high-frequency (40-100 Hz) synchronized activity preceding for 40-300 ms the beginning of the changes in EMG of the "working" limb. It is shown that EEG reactions are characterized (in comparison with the background activity) by a higher energetic level and a greater expression of the high coherence (I greater than 0.75) and also by greater phase shifts, in counterbalance to the domination of little phase shifts in the background activity. It is assumed that the patterns of EEG reactions may participate in trigger mechanisms either eliciting conditioned motor reactions (to positive conditioned stimuli) or preventing them (to inhibitory conditioned stimuli).  相似文献   

14.
In this study, we introduce the fast wavelet transform (WT) as a method for investigating the effects of morphine on the electroencephalogram (EEG), respiratory activity and blood pressure in fetal lambs. Morphine was infused intravenously at 25 mg/h. The EEG, respiratory activity and blood pressure signals were analyzed using WT. We performed wavelet decomposition for five sets of parameters D 2j where -1 < j 5. The five series WTs represent the detail signal bandwidths: 1, 16–32 Hz; 2, 8–16 Hz; 3, 4–8 Hz; 4, 2–4 Hz; 5, 1–2 Hz. Before injection of the high-dose morphine, power in the EEG was high in all six frequency bandwidths. The respiratory and blood pressure signals showed common frequency components with respect to time and were coincident with the low-voltage fast activity (LVFA) EEG signal. Respiratory activity was observed during only some of the LVFA periods, and was completely absent during high-voltage slow activity (HVSA) EEG. The respiratory signal showed dominant power in the fourth wavelet band, and less power in the third and fifth bands. The blood pressure signal was also characterized by dominant power in the fourth wavelet band. This power was significantly increased during periods of respiratory activity. There was a strong relationship between fetal EEG, blood pressure and breathing movements. However, the injection of high-dose morphine resulted in a disruption of the normal cyclic pattern between the two EEG states and a significant increase in power in the first wavelet band. In addition, the high-dose drug resulted in a significant increase in the power of respiratory signal in the fourth and fifth wavelet bands, while power was reduced in the third wavelet band. Breathing activity was also continuous after the drug. The high-dose morphine also caused a temporary power shift from the third wavelet band to the fourth wavelet band for the 30-min period after injection of drug. Finally, high-dose morphine completely destroyed the correlation between EEG, breathing and blood pressure signals.  相似文献   

15.
Electroencephalograms (EEG) were recorder in 19 standard derivations in 88 healthy subjects, while they were in the states: rest with eyes open; memorization (learning) of verbal bilingual semantic pairs (Latin and Russian languages); the retrieval of the rote information from memory (control). We compared estimates of EEG coherence in these states for the frequency bands theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-13 Hz), beta-1 (13-18 Hz), beta-2 (18-30 Hz), gamma (30-40 Hz). When compared with the rest most strongly expressed: for memorization a decrease of coherence in the pairs of derivations from frontal and central areas of the cortex in the EEG frequency bands; for retrieval an increase of coherence in interhemispheric derivation pairs of pariental-occipital region in majority of the frequency bands. For the retrieval also increases of coherence in the beta2 and gamma bands, along with coherence decreases at low frequencies take place in pairs formed by derivations from the parieto-occipital region with derivations from the frontal and the central ones. Dynamics of EEG coherence in comparisons of memorization and retrieval from the rest and each are expressed significantly more in the interhemispheric and crosshemispheric pairs of derivations than in the intrahemispheric pairs. Revealed topographic specificity of the dynamics of EEG coherence by changing the states is considered in terms of ideas about cognitive-specific forms of sustained goal-directed mental attention.  相似文献   

16.
Changes in spatial organization of EEG activity were analyzed in 44 humans during active 1-h hyperventilation using cyclic or circular breath (CB) technique similar to rebirthing breath technique. The dynamics of different indices was recorded each 5 min (using 12 time slots). A double-humped pattern of changes in spatial organization indices (linear processes) and spatial disorder (nonlinear processes) of biopotentials: an initial decrease within 1 to 20–30 min and a second one from 35–40 min to the end of session. A complex dynamics of spatial frequency processes (coherence and spectral power of biopotentials) with different pattern of changes within narrow frequency EEG bands. The dynamics of the spatial organization of EEG indices proved to depend on the intensity of hyperventilation-induced paroxysmal activity. The indices of spatial synchronization and disorder of biopotentials as well as low frequency β-activity (16.00–22.50 Hz) decreased more at the background of high rather than low paroxysmal activity, while the low frequency components (Δ and Θ) and high frequency α-activity (11.25–12.50 Hz) increased more. The obtained data are considered in terms of specific consciousness state induced by CB.  相似文献   

17.
The study was aimed to reveal the subbands of correlated changes in power spectral density of brain electrical activity (EA), including the low-voltage (up to 10 microV) high-frequency (HF) components (40-200 Hz) in dogs during instrumental conditioning by means of factor analysis. The values of the EA spectral density in interstimulus intervals calculated with a resolution of 1 Hz were used for subsequent factor analysis (the standard principle component technique with varimax rotation). Twenty factors could explain about 80% of total variance. The groups of frequencies which were presented by comparatively narrow peaks (2-3 points) of high loads (more than 0.6) of single factors ("stable" factors) were taken into consideration. In the process of conditioning the factor organization of the EA became substantially complicated, the number of the "stable" factors increased. It was originally shown that the high loads of these factors divided the HF band in comparatively narrow frequency subbands, which appear to reflect the functional mosaics in the neocortex.  相似文献   

18.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

19.
Electrical activity was studied of five different regions of dogs neocortex in inter-stimuli periods in the process of learning of motor habit of pressing the feeder pedal. Epidural electrodes were used. The processing was performed by means of correlation-spectral analysis in a wide band of 1-256 Hz. Values of cross-correlation coefficients, spectra of power, coherence and phase shifts were obtained. In the process of the habit consolidation the high frequencies power increased significantly (within the limits from 60 to 150-170 osc/sec), as well as the part of high coherence (over 0.75), falling on these limits, with low phase shifts. Relatively slow-wave oscillations (1-20 osc/sec) underwent changes of considerably lesser degree. A greater locality of high frequencies (in comparison with the traditional range of 1-20 Hz) was shown. The question of the nature of high frequency EEG components is discussed.  相似文献   

20.
Nonlinear dynamic properties were analyzed on the EEG and filtered rhythms recorded from healthy subjects and epileptic patients with complex partial seizures. Estimates of correlation dimensions of control EEG, interictal EEG and ictal EEG were calculated. The values were demonstrated on topograms. The delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz) components were obtained and considered as signals from the cortex. Corresponding surrogate data was produced. Firstly, the influence of sampling parameters on the calculation was tested. The dimension estimates of the signals from the frontal, temporal, parietal and occipital regions were computed and compared with the results of surrogate data. In the control subjects, the estimates between the EEG and surrogate data did not differ (P > 0.05). The interictal EEG from the frontal region and occipital region, as well as its theta component from the frontal region, and temporal region, showed obviously low dimensions (P < 0.01). The ictal EEG exhibited significantly low-dimension estimates across the scalp. All filtered rhythms from the temporal region yielded lower results than those of the surrogate data (P < 0.01). The dimension estimates of the EEG and filtered components markedly changed when the neurological state varied. For each neurological state, the dimension estimates were not uniform among the EEG and frequency components. The signal with a different frequency range and in a different neurological state showed a different dimension estimate. Furthermore, the theta and alpha components demonstrated the same estimates not only within each neurological state, but also among the different states. These results indicate that the theta and alpha components may be caused by similar dynamic processes. We conclude that the brain function underlying the ictal EEG has a simple mechanism. Several heterogeneous dynamic systems play important roles in the generation of EEG. Received: 10 December 1999 / Accepted in revised form: 8 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号