首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges.  相似文献   

2.
Reactive oxygen species (ROS), especially mitochondrial ROS, are postulated to play a significant role in muscle atrophy. We report a dramatic increase in mitochondrial ROS generation in three conditions associated with muscle atrophy: in aging, in mice lacking CuZn-SOD (Sod1(-/-)), and in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). ROS generation in muscle mitochondria is nearly threefold higher in 28- to 32-mo-old than in 10-mo-old mice and is associated with a 30% loss in gastrocnemius mass. In Sod1(-/-) mice, muscle mitochondrial ROS production is increased >100% in 20-mo compared with 5-mo-old mice along with a >50% loss in muscle mass. ALS G93A mutant mice show a 75% loss of muscle mass during disease progression and up to 12-fold higher muscle mitochondrial ROS generation. In a second ALS mutant model, H46RH48Q mice, ROS production is approximately fourfold higher than in control mice and is associated with a less dramatic loss (30%) in muscle mass. Thus ROS production is strongly correlated with the extent of muscle atrophy in these models. Because each of the models of muscle atrophy studied are associated to some degree with a loss of innervation, we were interested in determining whether denervation plays a role in ROS generation in muscle mitochondria isolated from hindlimb muscle following surgical sciatic nerve transection. Seven days post-denervation, muscle mitochondrial ROS production increased nearly 30-fold. We conclude that enhanced generation of mitochondrial ROS may be a common factor in the mechanism underlying denervation-induced atrophy.  相似文献   

3.
The mitochondrial permeability transition (mPT) is a potential pathogenic mechanism in neurodegeneration. Varying sensitivity to calcium-induced mPT has been demonstrated for regions within the CNS possibly correlating with vulnerability following insults. The spinal cord is selectively vulnerable in e.g. amyotrophic lateral sclerosis and increased mPT sensitivity of mitochondria derived from the spinal cord has previously been demonstrated. In this study, we introduce whole-body hypothermia prior to removal of CNS tissue to minimize the effects of differential tissue extraction prior to isolation of spinal cord and cortical brain mitochondria. Spinal cord mitochondria were able to retain considerably less calcium when administered as continuous infusion, which was not related to a general increased sensitivity of the mPT to calcium, its desensitization to calcium by the cyclophilin D inhibitor cyclosporin-A, or to differences in respiratory parameters. Spinal cord mitochondria maintained a higher concentration of extramitochondrial calcium during infusion than brain mitochondria possibly related to an increased set-point concentration for calcium uptake. A hampered transport and retention capacity of calcium may translate into an increased susceptibility of the spinal cord to neurodegenerative processes involving calcium-mediated damage.  相似文献   

4.
In ischemia-reperfusion injuries, elevated calcium and reactive oxygen species (ROS) induce mitochondrial permeability transition (mPT), which plays a pivotal role in mediating damages and cell death. Inhibition of mPT decreases necrotic cell death; however, during reperfusion, the continuous production of ROS may contribute to the temporary opening of the pore and thus the onset of the delayed apoptotic cell death. Based on amiodarone structure, we developed the first SOD-mimetic mPT inhibitor (HO-3538) that can eliminate ROS in the microenvironment of the permeability pore. In isolated mitochondria, HO-3538 inhibited mPT and the release of proapoptotic mitochondrial proteins. It had a ROS scavenging effect and antiapoptotic effect in a cardiomyocyte line and it diminished release of mitochondrial proapoptotic proteins. Furthermore, HO-3538 significantly enhanced the recovery of mitochondrial energy metabolism and functional cardiac parameters; decreased infarct size, lipid peroxidation, and protein oxidation; and suppressed necrotic as well as apoptotic cell death pathways in Langendorff-perfused hearts. In these respects it was somewhat superior to its two constituents, amiodarone and a pyrrol-derivative free radical scavenger. These data suggest that the SOD-mimetic mPT inhibitors are ideal candidates for drug development for the alleviation of postinfarct myocardial injuries.  相似文献   

5.
The objective of the present study was to validate the presence and explore the characteristics of mitochondrial permeability transition (mPT) in isolated mitochondria from human heart tissue in order to investigate if previous findings in animal models of cardiac disorders are translatable to human disease. Mitochondria were rapidly isolated from fresh atrial tissue samples obtained from 14 patients undergoing Maze surgery due to atrial fibrillation. Human heart mitochondria exhibited typical mPT characteristics upon calcium overload such as swelling, evaluated by changes in light scattering, inhibition of respiration and loss of respiratory coupling. Swelling was a morphologically reversible event following transient calcium challenge. Calcium retention capacity (CRC), a quantitative measure of mPT sensitivity assayed by following extramitochondrial [Ca2+] and changes in respiration during a continuous calcium infusion, was significantly increased by cyclophilin D (CypD) inhibitors. The thiol-reactive oxidant phenylarsine oxide sensitized mitochondria to calcium-induced mPT. Release of the pro-apoptotic intermembrane protein cytochrome c was increased after, but not before, calcium discharge and respiratory inhibition in the CRC assay. From the present study, we conclude that adult viable heart mitochondria have a CypD- and oxidant-regulated mPT. The findings support that inhibition of mPT may be a relevant pharmacological target in human cardiac disease and may underlie the beneficial effect of cyclosporin A in reperfusion injury.  相似文献   

6.
The mitochondrial permeability transition (mPT) is increasingly implicated in neuronal cell death. In the present study, isolated respiring brain mitochondria were examined for their ability to undergo calcium-induced mPT and their sensitivity to mPT inhibition by cyclosporin A (CsA). Previous studies have suggested a heterogeneous response to calcium, a limitation of CsA inhibition, and a relative resistance in the ability of respiring brain mitochondria to undergo mPT. Using fluorometric and electron microscopic analyses, we found that virtually the whole population of respiring brain mitochondria readily undergo mPT and swell upon calcium exposure. Further, brain mitochondria were highly sensitive to CsA which potentiated morphological recovery after transient swelling as well as completely blocked mPT induction in the presence of a low concentration of ADP. Using flow cytometry, which allows analysis of individual mitochondria, we demonstrate that both brain and liver mitochondria display homogeneous responses to calcium-induced mPT. We conclude that the mPT is one likely target for the broad in vivo neuroprotective effects displayed by CsA when allowed to penetrate the blood-brain barrier, and that development of compounds inhibiting mPT may prove beneficial for the treatment of severe brain disease.  相似文献   

7.
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane.  相似文献   

8.
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

9.
Reactive oxygen species (ROS) are considered a key factor in the heart aging process. Mitochondrial respiration is an important site of ROS generation and a potential contributor to heart functional changes with aging. We have examined the effects of aging on various parameters related to mitochondrial bioenergetics in rat heart, such as complex I activity, oxygen consumption, membrane potential, ROS production, and cardiolipin content and oxidation. A loss in complex I activity, state 3 respiration, and membrane potential was found in mitochondria with aging. The capacity of mitochondria to produce H(2)O(2) was significantly increased in aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, significantly decreased as a function of aging, whereas there was a significant increase in the level of oxidized cardiolipin. The lower complex I activity in mitochondria from aged rats could be almost completely restored to the level of young heart by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that aging causes heart mitochondrial complex I deficiency, which can be attributed to ROS-induced cardiolipin peroxidation. These results may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with heart aging.  相似文献   

10.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

11.
Mitochondrial adaptations to obesity-related oxidant stress   总被引:15,自引:0,他引:15  
It is not known why viable hepatocytes in fatty livers are vulnerable to necrosis, but associated mitochondrial alterations suggest that reactive oxygen species (ROS) production may be increased. Although the mechanisms for ROS-mediated lethality are not well understood, increased mitochondrial ROS generation often precedes cell death, and hence, might promote hepatocyte necrosis. The aim of this study is to determine if liver mitochondria from obese mice with fatty hepatocytes actually produce increased ROS. Secondary objectives are to identify potential mechanisms for ROS increases and to evaluate whether ROS increase uncoupling protein (UCP)-2, a mitochondrial protein that promotes ATP depletion and necrosis. Compared to mitochondria from normal livers, fatty liver mitochondria have a 50% reduction in cytochrome c content and produce superoxide anion at a greater rate. They also contain 25% more GSH and demonstrate 70% greater manganese superoxide dismutase activity and a 35% reduction in glutathione peroxidase activity. Mitochondrial generation of H(2)O(2) is increased by 200% and the activities of enzymes that detoxify H(2)O(2) in other cellular compartments are abnormal. Cytosolic glutathione peroxidase and catalase activities are 42 and 153% of control values, respectively. These changes in the production and detoxification of mitochondrial ROS are associated with a 300% increase in the mitochondrial content of UCP-2, although the content of beta-1 ATP synthase, a constitutive mitochondrial membrane protein, is unaffected. Supporting the possibility that mitochondrial ROS induce UCP-2 in fatty hepatocytes, a mitochondrial redox cycling agent that increases mitochondrial ROS production upregulates UCP-2 mRNAs in primary cultures of normal rat hepatocytes by 300%. Thus, ROS production is increased in fatty liver mitochondria. This may result from chronic apoptotic stress and provoke adaptations, including increases in UCP-2, that potentiate necrosis.  相似文献   

12.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

13.
In order to gain a first insight into the effects of reactive oxygen species (ROS) on plant mitochondria, we studied the effect of the ROS producing system consisting of xanthine plus xanthine oxidase on the rate of membrane potential (DeltaPsi) generation due to either succinate or NADH addition to durum wheat mitochondria as monitored by safranin fluorescence. We show that the early ROS production inhibits the succinate-dependent, but not the NADH-dependent, DeltaPsi generation and oxygen uptake. This inhibition appears to depend on the impairment of mitochondrial permeability to succinate. It does not involve mitochondrial thiol groups sensitive to either mersalyl or N-ethylmaleimide and might involve both protein residues and/or membrane lipids, as suggested by the mixed nature. We propose that, during oxidative stress, early generation of ROS can affect plant mitochondria by impairing metabolite transport, thus preventing further substrate oxidation, DeltaPsi generation and consequent large-scale ROS production.  相似文献   

14.
Ketone bodies (KB) have been shown to prevent neurodegeneration in models of Parkinson's and Alzheimer's diseases, but the mechanisms underlying these effects remain unclear. One possibility is that KB may exert antioxidant activity. In the current study, we explored the effects of KB on rat neocortical neurons exposed to hydrogen peroxide (H(2)O(2)) or diamide - a thiol oxidant and activator of mitochondrial permeability transition (mPT). We found that: (i) KB completely blocked large inward currents induced by either H(2)O(2) or diamide; (ii) KB significantly decreased the number of propidium iodide-labeled cells in neocortical slices after exposure to H(2)O(2) or diamide; (iii) KB significantly decreased reactive oxygen species (ROS) levels in dissociated neurons and in isolated neocortical mitochondria; (iv) the electrophysiological effects of KB in neurons exposed to H(2)O(2) or diamide were mimicked by bongkrekic acid and cyclosporin A, known inhibitors of mPT, as well as by catalase and DL - dithiothreitol, known antioxidants; (v) diamide alone did not significantly alter basal ROS levels in neurons, supporting previous studies indicating that diamide-induced neuronal injury may be mediated by mPT opening; and (vi) KB significantly increased the threshold for calcium-induced mPT in isolated mitochondria. Taken together, our data suggest that KB may prevent mPT and oxidative injury in neocortical neurons, most likely by decreasing mitochondrial ROS production.  相似文献   

15.
In animal models of neurodegenerative diseases pathological changes vary with the type of organ and species of the animals. We studied differences in the mitochondrial permeability transition (mPT) and reactive oxygen species (ROS) generation in the liver (LM) and brain (BM) of Sprague-Dawley rats and C57Bl mice. In the presence of ADP mouse LM and rat LM required three times less Ca2+ to initiate mPT than the corresponding BM. Mouse LM and BM sequestered 70% and 50% more Ca2+ phosphate than the rat LM and BM. MBM generated 50% more ROS with glutamate than the RBM, but not with succinate. With the NAD substrates, generation of ROS do not depend on the energy state of the BM. Organization of the respiratory complexes into the respirasome is a possible mechanism to prevent ROS generation in the BM. With BM oxidizing succinate, 80% of ROS generation was energy dependent. Induction of mPT does not affect ROS generation with NAD substrates and inhibit with succinate as a substrate. The relative insensitivity of the liver to systemic insults is associated with its high regenerative capacity. Neuronal cells with low regenerative capacity and a long life span protect themselves by minimizing ROS generation and by the ability to withstand very large Ca2+ insults. We suggest that additional factors, such as oxidative stress, are required to initiate neurodegeneration. Thus the observed differences in the Ca2+-induced mPT and ROS generation may underlie both the organ-specific and species-specific variability in the animal models of neurodegenerative diseases. permeability transition; reactive oxygen species generation; interspecies difference  相似文献   

16.
Schild L  Reiser G 《The FEBS journal》2005,272(14):3593-3601
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.  相似文献   

17.
Contraction-induced respiratory muscle fatigue and sepsis-related reductions in respiratory muscle force-generating capacity are mediated, at least in part, by reactive oxygen species (ROS). The subcellular sources and mechanisms of generation of ROS in these conditions are incompletely understood. We postulated that the physiological changes associated with muscle contraction (i.e., increases in calcium and ADP concentration) stimulate mitochondrial generation of ROS by a phospholipase A(2) (PLA(2))-modulated process and that sepsis enhances muscle generation of ROS by upregulating PLA(2) activity. To test these hypotheses, we examined H(2)O(2) generation by diaphragm mitochondria isolated from saline-treated control and endotoxin-treated septic animals in the presence and absence of calcium and ADP; we also assessed the effect of PLA(2) inhibitors on H(2)O(2) formation. We found that 1) calcium and ADP stimulated H(2)O(2) formation by diaphragm mitochondria from both control and septic animals; 2) mitochondria from septic animals demonstrated substantially higher H(2)O(2) formation than mitochondria from control animals under basal, calcium-stimulated, and ADP-stimulated conditions; and 3) inhibitors of 14-kDa PLA(2) blocked the enhanced H(2)O(2) generation in all conditions. We also found that administration of arachidonic acid (the principal metabolic product of PLA(2) activation) increased mitochondrial H(2)O(2) formation by interacting with complex I of the electron transport chain. These data suggest that diaphragm mitochondrial ROS formation during contraction and sepsis may be critically dependent on PLA(2) activation.  相似文献   

18.
19.
Abstract: Isolated rat CNS mitochondria and cultured cortical astrocytes were examined for behavior indicative of a mitochondrial permeability transition (mPT). Exposure of isolated CNS mitochondria to elevated calcium or phosphate or both produced loss of absorbance indicative of mitochondrial swelling. The absorbance decreases were prevented by ADP and Mg2+ and reduced by cyclosporin A, dithiothreitol, and N -ethylmaleimide. Ruthenium red prevented calcium cycling-induced, but only attenuated phosphate-induced losses of absorbance. In cultured astrocytes permeabilized with digitonin or treated with the calcium ionophore, 4-bromo-A23187, elevations of external calcium altered mitochondrial morphology visualized with the dye, JC-1, from rod-like to rounded, swollen structures. Similar changes were observed in digitonin-permeabilized astrocytes exposed to phosphate. The incidence of calcium-induced changes in astrocyte mitochondria was prevented by Mg2+ and pretreatment with dithiothreitol and N -ethylmaleimide, and was reduced by cyclosporin A, ADP, and butacaine alone or in combinations. Ruthenium red and the Na+/Ca2+ exchange inhibitor CGP 37157 blocked calcium cycling and prevented mitochondrial shape changes in digitonin-treated, but not ionophore-treated astrocytes. Thus, the demonstrated induction conditions and pharmacological profile indicated the existence of an mPT in brain mitochondria. The mPT occurred consequent to activation of calcium cycling-dependent and -independent pathways. Induction of an mPT could contribute to neuronal injury following ischemia and reperfusion.  相似文献   

20.
Lacerda L  Smith RM  Opie L  Lecour S 《Life sciences》2006,79(23):2194-2201
We previously reported that tumour necrosis factor alpha (TNFalpha) can mimic classic ischemic preconditioning (IPC) in both cells and heart. However, the signalling pathways involved remain incompletely understood. One potential protective pathway could be TNFalpha-induced reactive oxygen species (ROS). We hypothesized that TNFalpha cytoprotection occurs through the generation of ROS which originate within the mitochondria. C(2)C(12) myotubes were preconditioned with either a short period of hypoxia (IPC) or a low concentration of TNFalpha (0.5 ng/ml) prior to a simulated ischemic insult. ROS generation was evaluated on cells stained with dichlorofluorescin diacetate (DCFH-DA) by flow cytometry. The source of TNFalpha-induced ROS was examined with Mitotracker Red CM-H(2)XRos. The bioenergetics of the mitochondria were evaluated by investigation of the respiratory parameters and the inner mitochondrial membrane potential. Pretreatment with TNFalpha improved cell viability compared with the simulated ischemic control (TNFalpha: 75 +/- 1% versus 34 +/- 1% for the control: p<0.001). The ROS scavenger, N-2-mercaptopropionyl-glycine (MPG), reduced the viability of TNFalpha-stimulated cells to 15 +/- 1% (p<0.001 versus TNFalpha). Similar results were obtained with IPC. TNFalpha stimulation increased ROS production mainly in the mitochondria, and this increase was abolished in the presence of MPG. Addition of TNFalpha to the cells increased State 2 respiration and modestly depolarised the membrane potential prior to the ischemic insult. In conclusion, TNFalpha-induced ROS generation can occur within the mitochondria, resulting in temporal mitochondrial perturbations which may initiate the cytoprotective effect of TNFalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号