首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel inhibitor of p38 mitogen-activated protein kinase (p38), CMPD1, identified by high-throughput screening, is characterized herein. Unlike the p38 inhibitors described previously, this inhibitor is substrate selective and noncompetitive with ATP. In steady-state kinetics experiments, CMPD1 was observed to prevent the p38alpha-dependent phosphorylation (K(i)(app) = 330 nM) of the splice variant of mitogen-activated protein kinase-activated protein kinase 2 (MK2a) that contains a docking domain for p38alpha and p38beta, but it did not prevent the phosphorylation of ATF-2 (K(i)(app) > 20 microM). In addition to kinetic studies, isothermal titration calorimetry and surface plasmon resonance experiments were performed to elucidate the mechanism of inhibition. While isothermal titration calorimetry analysis indicated that CMPD1 binds to p38alpha, CMPD1 was not observed to compete with ATP for p38alpha, nor was it able to interrupt the binding of p38alpha to MK2a observed by surface plasmon resonance. Therefore, deuterium exchange mass spectrometry (DXMS) was employed to study the p38alpha.CMPD1 inhibitory complex, to provide new insight into the mechanism of substrate selective inhibition. The DXMS data obtained for the p38alpha.CMPD1 complex were compared to the data obtained for the p38alpha.MK2a complex and a p38alpha.active site binding inhibitor complex. Alterations in the DXMS behavior of both p38alpha and MK2a were observed upon complex formation, including but not limited to the interaction between the carboxy-terminal docking domain of MK2a and its binding groove on p38alpha. Alterations in the D(2)O exchange of p38alpha produced by CMPD1 suggest that the substrate selective inhibitor binds in the vicinity of the active site of p38alpha, resulting in perturbations to regions containing nucleotide binding pocket residues, docking groove residues (E160 and D161), and a Mg(2+) ion cofactor binding residue (D168). Although the exact mechanism of substrate selective inhibition by this novel inhibitor has not yet been disclosed, the results suggest that CMPD1 binding in the active site region of p38alpha induces perturbations that may result in the suboptimal positioning of substrates and cofactors in the transition state, resulting in selective inhibition of p38alpha activity.  相似文献   

2.
The p38 signaling pathway is activated in response to cell stress and induces production of proinflammatory cytokines. P38alpha is phosphorylated and activated in response to cell stress by MKK3 and MKK6 and in turn phosphorylates a number of substrates, including MAPKAP kinase 2 (MK2). We have determined the crystal structure of the unphosphorylated p38alpha-MK2 heterodimer. The C-terminal regulatory domain of MK2 binds in the docking groove of p38alpha, and the ATP-binding sites of both kinases are at the heterodimer interface. The conformation suggests an extra mechanism in addition to the regulation of the p38alpha and MK2 phosphorylation states that prevents phosphorylation of substrates in the absence of cell stress. Addition of constitutively active MKK6-DD results in rapid phosphorylation of the p38alpha-MK2 heterodimer.  相似文献   

3.
4.
Poly(ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK) are important nuclear enzymes that cooperate to minimize genomic damage caused by DNA strand interruptions. DNA strand interruptions trigger the ADP-ribosylation activity and phosphorylation activity of PARP and DNA-PK respectively. In order to understand the relationship of PARP and DNA-PK with respect to DNA binding required for their activation, we analyzed the kinetics of the reactions and determined the apparent dissociation constants (Kd app) of the enzymes for DNA strand interruptions. PARP has a high binding affinity for blunt ends of DNA (Kd app=116 pM) and 3' single-base overhangs (Kd app=332 pM) in comparison to long overhangs (Kd app=2.6-5.0 nM). Nicks are good activators of PARP although the affinity of PARP for nicks (Kd app=467 pM) is 4-fold less than that for blunt ends. The Kd app of DNA-PK for 3' single-base overhangs, blunt ends and long overhangs is 704 pM, 1.3 nM and 1.4-2.2 nM respectively. These results demonstrate that (1) PARP, when compared to DNA-PK, has a greater preference for blunt ends and 3' single-base overhangs but a weaker preference for long overhangs, and (2) nicks are effective in attracting and activating PARP. The possible implications of the preferences of PARP and DNA-PK for DNA strand interruptions in vivo are discussed.  相似文献   

5.
Akt activation requires phosphorylation of Thr(308) and Ser(473) by 3-phosphoinositide-dependent kinase-1 and 2 (PDK1 and PDK2), respectively. While PDK1 has been cloned and sequenced, PDK2 has yet to be identified. The present study shows that phosphatidylinositol 3-kinase-dependent p38 kinase activation regulates Akt phosphorylation and activity in human neutrophils. Inhibition of p38 kinase activity with SB203580 inhibited Akt Ser(473) phosphorylation following neutrophil stimulation with formyl-methionyl-leucyl-phenylalanine, FcgammaR cross-linking, or phosphatidylinositol 3,4,5-trisphosphate. Concentration inhibition studies showed that Ser(473) phosphorylation was inhibited by 0.3 microm SB203580, while inhibition of Thr(308) phosphorylation required 10 microm SB203580. Transient transfection of HEK293 cells with adenoviruses containing constitutively active MKK3 or MKK6 resulted in activation of both p38 kinase and Akt. Immunoprecipitation and glutathione S-transferase (GST) pull-down studies showed that Akt was associated with p38 kinase, MK2, and Hsp27 in neutrophils, and Hsp27 dissociated from the complex upon activation. Active recombinant MK2 phosphorylated recombinant Akt and Akt in anti-Akt, anti-MK2, anti-p38, and anti-Hsp27 immunoprecipitates, and this was inhibited by an MK2 inhibitory peptide. We conclude that Akt exists in a signaling complex containing p38 kinase, MK2, and Hsp27 and that p38-dependent MK2 activation functions as PDK2 in human neutrophils.  相似文献   

6.
7.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

8.
The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.  相似文献   

9.
Tumor necrosis factor alpha (TNFalpha) interferes with insulin signaling in adipose tissue and may promote insulin resistance. Insulin binding to the insulin receptor (IR) triggers its autophosphorylation, resulting in phosphorylation of Shc and the downstream activation of p42/p44 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2), which mediates insulin-induced proliferation in vascular smooth muscle cells (VSMC). Since insulin resistance is a risk factor for vascular disease, we examined the effects of TNFalpha on mitogenic signaling by insulin. In rat aortic VSMC, insulin induced rapid phosphorylation of the IR and Shc and caused a 5.3-fold increase in activated, phosphorylated ERK1/2 at 10 min. Insulin induced a biphasic ERK1/2 activation with a transient peak at 10 min and a sustained late phase after 2 h. Preincubation (30-120 min) with TNFalpha had no effect on insulin-induced IR phosphorylation. In contrast, TNFalpha transiently suppressed insulin-induced ERK1/2 activation. Insulin-induced phosphorylation of Shc was inhibited by TNFalpha in a similar pattern. Since mitogenic signaling by insulin in VSMC requires ERK1/2 activation, we examined the effect of TNFalpha on insulin-induced proliferation. Insulin alone induced a 3.4-fold increase in DNA synthesis, which TNFalpha inhibited by 48%. TNFalpha alone was not mitogenic. Inhibition of ERK1/2 activation with PD98059 also inhibited insulin-stimulated DNA synthesis by 57%. TNFalpha did not inhibit platelet-derived growth factor-induced ERK1/2 activation or DNA synthesis in VSMC. Thus, TNFalpha selectively interferes with insulin-induced mitogenic signaling by inhibiting the phosphorylation of Shc and the downstream activation of ERK1/2.  相似文献   

10.
11.
12.
The p38 MAPK and heat shock protein 27 (hsp27) form a signaling complex with serine/threonine kinase Akt and MAPK-activated protein kinase-2 (MK2), which plays an important role in controlling stress-induced apoptosis and reorganizing actin cytoskeleton. However, regulation of the complex is poorly understood. In this study, the interaction between p38 and hsp27 was visualized in single living L929 cells using fluorescence resonance energy transfer technology, while their association with Akt was examined by immunoprecipitation analysis. Under normal growth conditions, p38 kinase constitutively interacts with hsp27. When cells were exposed to H(2)O(2) or stimulated by arachidonic acid, this interaction was disrupted. However, inhibition of the activation of p38 and Akt by selective inhibitors or overexpression of the kinase-dead mutant of p38 diminished such effects. Furthermore, mutation of phosphorylation sites of hsp27 renders the interaction resistant to H(2)O(2) and arachidonic acid. It was interesting to find that the interaction disappeared in the cells from MK2-knock-out mice or the cells treated with lemptomycin B that blocks export of MK2 from nucleus to cytosol. However, MK2 is not required for the association of hsp27 with Akt. This study suggests that MK2 mediates the incorporation of p38 into the pre-existing complex of hsp27 with Akt. Phosphorylation of hsp27 finally breaks the signaling complex.  相似文献   

13.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors.  相似文献   

14.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix (ECM) synthesis that leads to renal fibrosis. Intracellular signaling mechanisms involved in this process remain incompletely understood. Mitogen-activated protein kinase (MAPK) is a major stress signal-transducing pathway, and we have previously reported activation of p38 MAPK by TGF-beta1 in rat mesangial cells and its role in the stimulation of pro-alpha1(I) collagen. In this study, we further investigated the mechanism of p38 MAPK activation by TGF-beta1 and the role of MKK3, an upstream MAPK kinase of p38 MAPK, by examining the effect of targeted disruption of the Mkk3 gene. We first isolated glomerular mesangial cells from MKK3-null (Mkk3-/-) and wild-type (Mkk3+/+) control mice. Treatment with TGF-beta1 induced rapid phosphorylation of MKK3 as well as p38 MAPK within 15 min in cultured wild-type (Mkk3+/+) mouse mesangial cells. In contrast, TGF-beta1 failed to induce phosphorylation of either MKK3 or p38 MAPK in MKK3-deficient (Mkk3-/-) mouse mesangial cells, indicating that MKK3 is required for TGF-beta1-induced p38 MAPK activation. TGF-beta1 selectively activated the p38 MAPK isoforms p38alpha and p38delta in wild-type (Mkk3+/+) mesangial cells, but not in MKK3-deficient (Mkk3-/-) mesangial cells. Thus, activation of p38alpha and p38delta is dependent on the activation of upstream MKK3 by TGF-beta1. Furthermore, MKK3 deficiency resulted in a selective disruption of TGF-beta1-stimulated up-regulation of pro-alpha1(I) collagen expression but not TGF-beta1 induction of fibronectin and PAI-1. These data demonstrate that the MKK3 is a critical component of the TGF-beta1 signaling pathway, and its activation is required for subsequent p38alpha and p38delta MAPK activation and collagen stimulation by TGF-beta1.  相似文献   

15.
Binding and endocytosis of alpha 2-macroglobulin-plasmin complexes   总被引:1,自引:0,他引:1  
K A Ney  S Gidwitz  S V Pizzo 《Biochemistry》1985,24(17):4586-4592
The clearance of 125I-labeled alpha 2-macroglobulin-plasmin complexes (125I-alpha 2M-PM) from mouse circulation is slower than that of 125I-labeled alpha 2M-methylamine complexes (125I-alpha 2M-CH3NH2). In addition, clearance of 125I-alpha 2M-PM is biphasic, but that of 125I-alpha 2M-CH3NH2 follows simple first-order kinetics. Treatment of alpha 2M-PM with trypsin yields a complex that clears like alpha 2M-CH3NH2. Complexes of alpha 2M with Val442-plasmin (alpha 2M-Val442-PM) were prepared; alpha 2M-Val442-PM has a stoichiometry of 2 mol of Val442-PM to 1 mol of alpha 2M and also clears like alpha 2M-CH3NH2. In vitro 4 degrees C binding inhibition studies with mouse peritoneal macrophages show that alpha 2M-CH3NH2, alpha 2M-PM, trypsin-treated alpha 2M-PM, and alpha 2M-Val442-PM bind with the same affinity, apparent Kd = 0.4 nM. The binding isotherms at 4 degrees C are the same for 125I-alpha 2M-CH3NH2, 125I-alpha 2M-PM, and 125I-trypsin-treated alpha 2M-PM in both mouse peritoneal macrophages and 3T3-L1 fibroblasts. The Scatchard plots for the binding isotherms in macrophages were curved; those in 3T3-L1 fibroblasts were linear with an apparent Kd of 0.48 nM and a receptor activity of 140 fmol/mg of cell protein for alpha 2M-CH3NH2, an apparent Kd of 0.29 nM and a receptor activity of 110 fmol/mg of cell protein for alpha 2M-PM, and an apparent Kd of 0.35 nM and a receptor activity of 210 fmol/mg of cell protein for trypsin-treated alpha 2M-PM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Tuberous sclerosis complex (TSC) is a genetic disease caused by mutations in either TSC1 or TSC2 tumor suppressor genes. TSC1 and TSC2 (also known as hamartin and tuberin, respectively) form a functional complex and negatively regulate cell growth by inhibiting protein synthesis. 14-3-3 binds to TSC2 and may inhibit TSC2 function. We have reported previously that phosphorylation of serine 1210 (Ser(1210)) in TSC2 is essential for 14-3-3 binding. Here we show that serum and anisomycin enhance the interaction between TSC2 and 14-3-3 by stimulating phosphorylation of Ser(1210). Activation of p38 MAP kinase (p38) is essential for the stimulating effect of serum and anisomycin although p38 is not directly responsible for the phosphorylation of Ser(1210) in TSC2. Both in vitro and in vivo experiments demonstrate that the p38-activated kinase MK2 (also known as MAPKAPK2) is directly responsible for the phosphorylation of Ser(1210). Our data show that anisomycin stimulates phosphorylation of Ser(1210) of TSC2 via the p38-MK2 kinase cascade. Phosphorylation of TSC2 by MK2 creates a 14-3-3 binding site and thus regulates the cellular function of the TSC2 tumor suppressor protein.  相似文献   

17.
p38alpha and p38beta MAPKs (mitogen-activated protein kinases) share about 80% of their protein sequence identity, but have quite different biological functions. One such difference is in regulating the subcellular localization of their downstream kinases, such as PRAK (p38-regulated/activated protein kinase or MK5). The p38alpha-PRAK complex is found in the nucleus, whereas the p38beta-PRAK complex is exclusively localized to the cytosol. By generating a series of chimeric and point mutants of p38alpha and p38beta, we found two amino acid residues (Asp(145) and Leu(156) in p38alpha, Gly(145) and Val(156) in p38beta) that determine the distinct subcellular locations of p38alpha-PRAK and p38beta-PRAK. The subcellular localization of MK2 (MAPK-activated protein kinase 2), another downstream kinase of p38, was regulated in the same manner as that of PRAK. We found that nuclear import, but not export, determines the subcellular localization of p38alpha-PRAK and p38beta-PRAK. The published structure of the p38alpha-MK2 complex suggests Leu(156) of p38alpha is involved in the interaction with the nuclear localization signal in PRAK. The difference at this residue between p38alpha and p38beta may affect the nuclear localization signal in PRAK differently, and thereby influence the import of the complexes. Asp(145) in p38alpha (or Gly(145) in p38beta) is located on a different surface patch, and further random mutagenesis revealed that mutation of Asp(145), Thr(123), and Gln(325), the residues that can directly interact with importin alpha as predicted by modeling, but not mutation of the other 7 amino acid residues that cannot reach importin alpha, re-locate p38alpha-PRAK to the cytosol, suggesting that interaction with import machinery is involved in determining the subcellular localization of the p38alpha-PRAK and p38beta-PRAK complexes. Last, we show that nuclear localization of PRAK is required for its role in inhibiting the proliferation of NIH3T3 cells. In conclusion, multiple determinants control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes, and the location of PRAK plays a role in its function.  相似文献   

18.
Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine secreted from macrophages and adipocytes. It is well known that chronic TNFalpha exposure can lead to insulin resistance both in vitro and in vivo and that elevated blood levels of TNFalpha are observed in obese and/or diabetic individuals. TNFalpha has many acute biologic effects, mediated by a complex intracellular signaling pathway. In these studies we have identified new G-protein signaling components to this pathway in 3T3-L1 adipocytes. We found that beta-arrestin-1 is associated with TRAF2 (TNF receptor-associated factor 2), an adaptor protein of TNF receptors, and that TNFalpha acutely stimulates tyrosine phosphorylation of G alpha(q/11) with an increase in G alpha(q/11) activity. Small interfering RNA-mediated knockdown of beta-arrestin-1 inhibits TNFalpha-induced tyrosine phosphorylation of G alpha(q/11) by interruption of Src kinase activation. TNFalpha stimulates lipolysis in 3T3-L1 adipocytes, and beta-arrestin-1 knockdown blocks the effects of TNFalpha to stimulate ERK activation and glycerol release. TNFalpha also led to activation of JNK with increased expression of the proinflammatory gene, monocyte chemoattractant protein-1 and matrix metalloproteinase 3, and beta-arrestin-1 knockdown inhibited both of these effects. Taken together these results reveal novel elements of TNFalpha action; 1) the trimeric G-protein component G alpha(q/11) and the adapter protein beta-arrestin-1 can function as signaling molecules in the TNFalpha action cascade; 2) beta-arrestin-1 can couple TNFalpha stimulation to ERK activation and lipolysis; 3) beta-arrestin-1 and G alpha(q/11) can mediate TNFalpha-induced phosphatidylinositol 3-kinase activation and inflammatory gene expression.  相似文献   

19.
The MAPK-activated protein kinases (MAPKAP kinases) MK2 and MK3 are directly activated via p38 MAPK phosphorylation, stabilize p38 by complex formation, and contribute to the stress response. The list of substrates of MK2/3 is increasing steadily. We applied a phosphoproteomics approach to compare protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2. In addition to differences in phosphorylation of the known substrates of MK2, HSPB1 and Bag-2, we identified strong differences in phosphorylation of keratin 8 (K8). The phosphorylation of K8-Ser73 is catalyzed directly by p38, which in turn shows MK2-dependent expression. Notably, analysis of small molecule p38 inhibitors on K8-Ser73 phosphorylation also demonstrated reduced phosphorylations of keratins K18-Ser52 and K20-Ser13 but not of K8-Ser431 or K18-Ser33. Interestingly, K18-Ser52 and K20-Ser13 are not directly phosphorylated by p38 in vitro, but by MK2. Furthermore, anisomycin-stimulated phosphorylations of K20-Ser13 and K18-Ser52 are inhibited by small molecule inhibitors of both p38 and MK2. MK2 knockdown in HT29 cells leads to reduced K20-Ser13 phosphorylation, which further supports the notion that MK2 is responsible for K20 phosphorylation in vivo. Physiologic relevance of these findings was confirmed by differences of K20-Ser13 phosphorylation between the ileum of wild-type and MK2/3-deficient mice and by demonstrating p38- and MK2-dependent mucin secretion of HT29 cells. Therefore, MK2 and p38 MAPK function in concert to phosphorylate K8, K18, and K20 in intestinal epithelia.  相似文献   

20.
Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号