首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.  相似文献   

2.
Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants.  相似文献   

3.
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.  相似文献   

4.
To define and monitor the structure of microbial communities found in the human vagina, a cultivation-independent approach based on analyses of terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes was developed and validated. Sixteen bacterial strains commonly found in the human vagina were used to construct model communities that were subsequently used to develop efficient means for the isolation of genomic DNA and an optimal strategy for T-RFLP analyses. The various genera in the model community could best be resolved by digesting amplicons made using bacterial primers 8f and 926r with HaeIII; fewer strains could be resolved using other primer-enzyme combinations, and no combination successfully distinguished certain species of the same genus. To demonstrate the utility of the approach, samples from five women that had been collected over a 2-month period were analyzed. Differences and similarities among the vaginal microbial communities of the women were readily apparent. The T-RFLP data suggest that the communities of three women were dominated by a single phylotype, most likely species of Lactobacillus. In contrast, the communities of two other women included numerically abundant populations that differed from Lactobacillus strains whose 16S rRNA genes had been previously determined. The T-RFLP profiles of samples from all the women were largely invariant over time, indicating that the kinds and abundances of the numerically dominant populations were relatively stable throughout two menstrual cycles. These findings show that T-RFLP of 16S rRNA genes can be used to compare vaginal microbial communities and gain information about the numerically dominant populations that are present.  相似文献   

5.
Efficient, nonselective methods to obtain DNA from the environment are needed for rapid and thorough analysis of introduced microorganisms in environmental samples and for analysis of microbial community diversity in soil. A small-scale procedure to rapidly extract and purify DNA from soils was developed for in-the-field use. Amounts of DNA released from bacterial vegetative cells, bacterial endospores, and fungal conidia were compared by using hot-detergent treatment, freeze-thaw cycles, and bead mill homogenization. Combining a hot-detergent treatment with bead mill homogenization gave the highest DNA yields from all three microbial cell types and provided DNA from the broadest range of microbial groups in a natural soil community. Only the bead mill homogenization step was effective for DNA extraction from Bacillus globigii (B. subtilis subsp. niger) endospores or Fusarium moniliforme conidia. The hot-detergent–bead mill procedure was simplified and miniaturized. By using this procedure and small-scale, field-adapted purification and quantification procedures, DNA was prepared from four different soils seeded with Pseudomonas putida cells or B. globigii spores. In a New Mexico soil, seeded bacterial targets were detected with the same sensitivity as when assaying pure bacterial DNA (2 to 20 target gene copies in a PCR mixture). The detection limit of P. putida cells and B. globigii spores in different soils was affected by the amount of background DNA in the soil samples, the physical condition of the DNA, and the amount of DNA template used in the PCR.  相似文献   

6.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.  相似文献   

7.
Park JW  Crowley DE 《BioTechniques》2005,38(4):579-586
The analysis of microbial communities in environmental samples requires accurate and reproducible methods for extraction of DNA from sample matrices that have different physical and chemical characteristics. Even with the same sample type, variations in laboratory methods can result in different DNA yields. To circumvent this problem, we have developed an easy and inexpensive way to normalize the quantities of DNA that involves the addition of an internal standard prepared from plasmid DNA. The method was evaluated by comparing DNA yields using different DNA extraction procedures, after which the DNA was used for microbial community analysis by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S ribosomal RNA (rRNA) and for quantification of 16S rRNA gene copy numbers in environmental samples by real-time PCR. Our results show that use of the internal standard allows normalization of the resulting data and more accurate quantification of gene copy numbers in soil samples. These methods should also have broad application for various other types of environmental samples.  相似文献   

8.
Due to the high diversity of bacteria in many ecosystems, their slow generation times, specific but mostly unknown nutrient requirements and syntrophic interactions, isolation based approaches in microbial ecology mostly fail to describe microbial community structure. Thus, cultivation independent techniques, which rely on directly extracted nucleic acids from the environment, are a well-used alternative. For example, bacterial automated ribosomal intergenic spacer analysis (B-ARISA) is one of the widely used methods for fingerprinting bacterial communities after PCR-based amplification of selected regions of the operon coding for rRNA genes using community DNA. However, B-ARISA alone does not provide any taxonomic information and the results may be severely biased in relation to the primer set selection. Furthermore, amplified DNA stemming from mitochondrial or chloroplast templates might strongly bias the obtained fingerprints. In this study, we determined the applicability of three different B-ARISA primer sets to the study of bacterial communities. The results from in silico analysis harnessing publicly available sequence databases showed that all three primer sets tested are specific to bacteria but only two primers sets assure high bacterial taxa coverage (1406f/23Sr and ITSF/ITSReub). Considering the study of bacteria in a plant interface, the primer set ITSF/ITSReub was found to amplify (in silico) sequences of some important crop species such as Sorghum bicolor and Zea mays. Bacterial genera and plant species potentially amplified by different primer sets are given. These data were confirmed when DNA extracted from soil and plant samples were analyzed. The presented information could be useful when interpreting existing B-ARISA results and planning B-ARISA experiments, especially when plant DNA can be expected.  相似文献   

9.
The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (p<0.001). UniFrac distance based principal coordinate analysis (PCoA) plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for <0.5% of the total reads in intake samples but more than 50% of the reads in the treated discharge samples. The only apparent difference in microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new Ion Torrent sequencing techniques to microbial community studies.  相似文献   

10.
Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples. In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria. Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect, while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics. Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically inundated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.  相似文献   

11.
Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.  相似文献   

12.
Toward a census of bacteria in soil   总被引:2,自引:0,他引:2  
For more than a century, microbiologists have sought to determine the species richness of bacteria in soil, but the extreme complexity and unknown structure of soil microbial communities have obscured the answer. We developed a statistical model that makes the problem of estimating richness statistically accessible by evaluating the characteristics of samples drawn from simulated communities with parametric community distributions. We identified simulated communities with rank-abundance distributions that followed a truncated lognormal distribution whose samples resembled the structure of 16S rRNA gene sequence collections made using Alaskan and Minnesotan soils. The simulated communities constructed based on the distribution of 16S rRNA gene sequences sampled from the Alaskan and Minnesotan soils had a richness of 5,000 and 2,000 operational taxonomic units (OTUs), respectively, where an OTU represents a collection of sequences not more than 3% distant from each other. To sample each of these OTUs in the Alaskan 16S rRNA gene library at least twice, 480,000 sequences would be required; however, to estimate the richness of the simulated communities using nonparametric richness estimators would require only 18,000 sequences. Quantifying the richness of complex environments such as soil is an important step in building an ecological framework. We have shown that generating sufficient sequence data to do so requires less sequencing effort than completely sequencing a bacterial genome.  相似文献   

13.
Human body sites represent ecological niches for microorganisms, each providing variations in microbial exposure, nutrient availability, microbial competition, and host immunological responses. In this study, we investigated the oral, anal, and cervical microbiomes from the same 20 sexually active adolescent females, using culture-independent, next-generation sequencing. DNA from each sample was amplified for the bacterial 16S rRNA gene and sequenced on an Illumina platform using paired-end reads. Across the three anatomical niches, we found significant differences in bacterial community composition and diversity. Overall anal samples were dominated with Prevotella and Bacteriodes, oral samples with Streptococcus and Prevotella, and cervical samples with Lactobacillus. The microbiomes of a few cervical samples clustered with anal samples in weighted principal coordinate analyses, due in part to a higher proportion of Prevotella in those samples. Additionally, cervical samples had the lowest alpha diversity. Our results demonstrate the occurrence of distinct microbial communities across body sites within the same individual.  相似文献   

14.
It is important to estimate the true microbial diversities accurately for a comparative microbial diversity analysis among various ecological settings in ecological models. Despite drastically increasing amounts of 16S rRNA gene targeting pyrosequencing data, sampling and data interpretation for comparative analysis have not yet been standardized. For more accurate bacterial diversity analyses, the influences of soil heterogeneity and sequence resolution on bacterial diversity estimates were investigated using pyrosequencing data of oak and pine forest soils with focus on the bacterial 16SrRNA gene. Soil bacterial community sets were phylogenetically clustered into two separate groups by forest type. Rarefaction curves showed that bacterial communities sequenced from the DNA mixtures and the DNAs of the soil mixtures hadmidsize richness compared with other samples. Richness and diversity estimates were highly variable depending on the sequence read numbers. Bacterial richness estimates (ACE, Chao 1 and Jack) of the forest soils had positive linear relationships with the sequence read number. Bacterial diversity estimates (NPShannon, Shannon and the inverse Simpson) of the forest soils were also positively correlated with the sequence read number. One-way ANOVA shows that sequence resolution significantly affected the a-diversity indices (P<0.05), but the soil heterogeneity did not (P>0.05). For an unbiased evaluation, richness and diversity estimates should be calculated and compared from subsets of the same size.  相似文献   

15.
Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.  相似文献   

16.

Background

Fungi are important pathogens but challenging to enumerate using next-generation sequencing because of low absolute abundance in many samples and high levels of fungal DNA from contaminating sources.

Results

Here, we analyze fungal lineages present in the human airway using an improved method for contamination filtering. We use DNA quantification data, which are routinely acquired during DNA library preparation, to annotate output sequence data, and improve the identification and filtering of contaminants. We compare fungal communities and bacterial communities from healthy subjects, HIV+ subjects, and lung transplant recipients, providing a gradient of increasing lung impairment for comparison. We use deep sequencing to characterize ribosomal rRNA gene segments from fungi and bacteria in DNA extracted from bronchiolar lavage samples and oropharyngeal wash. Comparison to clinical culture data documents improved detection after applying the filtering procedure.

Conclusions

We find increased representation of medically relevant organisms, including Candida, Cryptococcus, and Aspergillus, in subjects with increasingly severe pulmonary and immunologic deficits. We analyze covariation of fungal and bacterial taxa, and find that oropharyngeal communities rich in Candida are also rich in mitis group Streptococci, a community pattern associated with pathogenic polymicrobial biofilms. Thus, using this approach, it is possible to characterize fungal communities in the human respiratory tract more accurately and explore their interactions with bacterial communities in health and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0487-y) contains supplementary material, which is available to authorized users.  相似文献   

17.
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or ‘boom/bust'' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P⩽0.005). Associations observed between bacteria and viruses (P⩽0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%–0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a ‘mean'' microbial community set by longer-term controlling factors.  相似文献   

18.
Microbial community samples can be efficiently surveyed in high throughput by sequencing markers such as the 16S ribosomal RNA gene. Often, a collection of samples is then selected for subsequent metagenomic, metabolomic or other follow-up. Two-stage study design has long been used in ecology but has not yet been studied in-depth for high-throughput microbial community investigations. To avoid ad hoc sample selection, we developed and validated several purposive sample selection methods for two-stage studies (that is, biological criteria) targeting differing types of microbial communities. These methods select follow-up samples from large community surveys, with criteria including samples typical of the initially surveyed population, targeting specific microbial clades or rare species, maximizing diversity, representing extreme or deviant communities, or identifying communities distinct or discriminating among environment or host phenotypes. The accuracies of each sampling technique and their influences on the characteristics of the resulting selected microbial community were evaluated using both simulated and experimental data. Specifically, all criteria were able to identify samples whose properties were accurately retained in 318 paired 16S amplicon and whole-community metagenomic (follow-up) samples from the Human Microbiome Project. Some selection criteria resulted in follow-up samples that were strongly non-representative of the original survey population; diversity maximization particularly undersampled community configurations. Only selection of intentionally representative samples minimized differences in the selected sample set from the original microbial survey. An implementation is provided as the microPITA (Microbiomes: Picking Interesting Taxa for Analysis) software for two-stage study design of microbial communities.  相似文献   

19.
Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community''s bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.  相似文献   

20.
The polymerase chain reaction coupled with denaturing gradient gel electrophoresis (PCR-DGGE) has been used widely to determine species richness and structure of microbial communities in a variety of environments. Researchers commonly archive soil samples after routine chemical or microbial analyses, and applying PCR-DGGE technology to these historical samples offers evaluation of long-term patterns in bacterial species richness and community structure that was not available with previous technology. However, use of PCR-DGGE to analyze microbial communities of archived soils has been largely unexplored. To evaluate the stability of DGGE patterns in archived soils in comparison with fresh soils, fresh and archived soils from five sites along an elevational gradient in the Chihuahuan Desert were compared using PCR-DGGE of 16S rDNA. DNA from all archived samples was extracted reliably, but DNA in archived soils collected from a closed-canopy oak forest site could not be amplified. DNA extraction yields were lower for most archived soils, but minimal changes in bacterial species richness and structure due to archiving were noted in bacterial community profiles from four sites. Use of archived soils to determine long-term changes in bacterial community structure via PCR-DGGE appears to be a viable option for addressing microbial community dynamics for particular ecosystems or landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号