首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.  相似文献   

2.
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.  相似文献   

3.
Seven mature type I sourdoughs were comparatively back-slopped (80 days) at artisan bakery and laboratory levels under constant technology parameters. The cell density of presumptive lactic acid bacteria and related biochemical features were not affected by the environment of propagation. On the contrary, the number of yeasts markedly decreased from artisan bakery to laboratory propagation. During late laboratory propagation, denaturing gradient gel electrophoresis (DGGE) showed that the DNA band corresponding to Saccharomyces cerevisiae was no longer detectable in several sourdoughs. Twelve species of lactic acid bacteria were variously identified through a culture-dependent approach. All sourdoughs harbored a certain number of species and strains, which were dominant throughout time and, in several cases, varied depending on the environment of propagation. As shown by statistical permutation analysis, the lactic acid bacterium populations differed among sourdoughs propagated at artisan bakery and laboratory levels. Lactobacillus plantarum, Lactobacillus sakei, and Weissella cibaria dominated in only some sourdoughs back-slopped at artisan bakeries, and Leuconostoc citreum seemed to be more persistent under laboratory conditions. Strains of Lactobacillus sanfranciscensis were indifferently found in some sourdoughs. Together with the other stable species and strains, other lactic acid bacteria temporarily contaminated the sourdoughs and largely differed between artisan bakery and laboratory levels. The environment of propagation has an undoubted influence on the composition of sourdough yeast and lactic acid bacterium microbiotas.  相似文献   

4.
A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment rather than the type or batch of flour largely determines the development of a stable LAB population in sourdoughs.  相似文献   

5.
AIMS: Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. METHODS AND RESULTS: A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. CONCLUSIONS: The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.  相似文献   

6.
Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.  相似文献   

7.
Aims:  To study lactic acid bacteria (LAB) and yeast dynamics during the production processes of sweet-leavened goods manufactured with type I sourdoughs.
Methods and Results:  Fourteen sourdough and dough samples were taken from a baking company in central Italy during the production lines of three varieties of Panettone. The samples underwent pH measurements and plating analysis on three solid media. The microbial DNA was extracted from both the (sour)doughs and the viable LAB and yeast cells collected in bulk, and subjected to PCR-denaturing gradient gel electrophoresis (DGGE) analysis. The molecular fingerprinting of the cultivable plus noncultivable microbial populations provide evidence of the dominance of Lactobacillus sanfranciscensis , Lactobacillus brevis and Candida humilis in the three fermentation processes. The DGGE profiles of the cultivable communities reveal a bacterial shift in the final stages of two of the production processes, suggesting an effect of technological parameters on the selection of the dough microflora.
Conclusions:  Our findings confirm the importance of using a combined analytical approach to explore microbial communities that develop during the leavening process of sweet-leavened goods.
Significance and Impact of the Study:  In-depth studies of sourdough biodiversity and population dynamics occurring during sourdough fermentation are fundamental for the control of the leavening process and the manufacture of standardized, high-quality products.  相似文献   

8.
AIMS: To identify and characterize bacteriocion-producing lactic acid bacteria (LAB) in sourdoughs and to compare in vitro and in situ bacteriocin activity of sourdough- and nonsourdough LAB. METHODS AND RESULTS: Production of antimicrobial compounds by 437 Lactobacillus strains isolated from 70 sourdoughs was investigated. Five strains (Lactobacillus pentosus 2MF8 and 8CF, Lb. plantarum 4DE and 3DM and Lactobacillus spp. CS1) were found to produce distinct bacteriocin-like inhibitory substances (BLIS). BLIS-producing Lactococcus lactis isolated from raw barley showed a wider inhibitory spectrum than sourdough LAB, but they did not inhibit all strains of the key sourdough bacterium Lb. sanfranciscensis. Antimicrobial production by Lb. pentosus 2MF8 and Lc. lactis M30 was also demonstrated in situ. CONCLUSIONS: BLIS production by sourdough LAB appears to occur at a low frequency, showing limited inhibitory spectrum when compared with BLIS-producing Lc. lactis. Nevertheless, they are active BLIS producers under sourdough and bread-making conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The activity of BLIS has been demonstrated in situ. It may influence the complex sourdough microflora and support the implantation and stability of selected insensitive bacteria, such as Lb. sanfranciscensis, useful to confer good characteristics to the dough.  相似文献   

9.
Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.  相似文献   

10.
AIMS: To study the microbial communities in artisanal sourdoughs, manufactured by traditional procedure in different areas of Sicily, and to evaluate the lactic acid bacteria (LAB) population by classical and culture-independent approaches. METHODS AND RESULTS: Forty-five LAB isolates were identified both by phenotypic and molecular methods. The restriction fragment length polymorphism and 16S ribosomal DNA gene sequencing gave evidence of a variety of species with the dominance of Lactobacillus sanfranciscensis and Lactobacillus pentosus, in all sourdoughs tested. Culture-independent method, such as denaturing gradient gel electrophoresis (DGGE) of the V6-V8 regions of the 16S rDNA, was applied for microbial community fingerprint. The DGGE profiles revealed the dominance of L. sanfranciscensis species. In addition, Lactobacillus-specific primers were used to amplify the V1-V3 regions of the 16S rDNA. DGGE profiles flourished the dominance of L. sanfranciscensis and Lactobacillus fermentum in the traditional sourdoughs, and revealed that the closely related species Lactobacillus kimchii and Lactobacillus alimentarius were not discriminated. CONCLUSIONS: Lactobacillus-specific PCR-DGGE analysis is a rapid tool for rapid detection of Lactobacillus species in artisanal sourdough. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a characterization of Lactobacillus isolates from artisanal sourdoughs and highlights the value of DGGE approach to detect uncultivable Lactobacillus species.  相似文献   

11.
The objective of this work was to investigate the structure and diversity of lactic acid bacteria (LAB) communities in sourdough used for the production of traditional breads (Carasau, Moddizzosu, Spianata, Zichi) in Sardinia. 16S rDNA sequencing and Randomly Amplified Polymorphic DNA (RAPD-PCR) was applied for the identification and typing of the LAB isolated from 25 samples of sourdoughs. Multivariate statistical techniques were applied to RAPD-PCR pattern to study the biological diversity of sourdough samples. Twelve different species of LAB were identified, and most isolates were classified as facultative heterofermentative lactobacilli. Lactobacillus pentosus dominated the lactic microflora of many samples while Lactobacillus sanfranciscensis was isolated only from a limited number of samples. Although heterofermentative species represented between between 30% and 60% of the isolates in Carasau, Spianata and Zichi sourdoughs, only 2% of the isolates from Moddizzosu sourdoughs were identified as heterofermentative LAB. RAPD-PCR with a single primer followed by cluster analysis did not allow the identification of the isolates at the species level. However, a multidimensional scaling/bootstrapping approach on the RAPD-PCR patterns uncovered the diversity of the LAB communities of LAB showing differences both within and between bread types.  相似文献   

12.
Sourdough fermentation is a cereal fermentation that is characterized by the formation of stable yeast/lactic acid bacteria (LAB) associations. It is a unique process among food fermentations in that the LAB that mostly dominate these fermentations are heterofermentative. In the present study, four wheat sourdough fermentations were carried out under different conditions of temperature and backslopping time to determine their effect on the composition of the microbiota of the final sourdoughs. A substantial effect of temperature was observed. A fermentation with 10 backsloppings (once every 24 h) at 23°C resulted in a microbiota composed of Leuconostoc citreum as the dominant species, whereas fermentations at 30 and 37°C with backslopping every 24 h resulted in ecosystems dominated by Lactobacillus fermentum. Longer backslopping times (every 48 h at 30°C) resulted in a combination of Lactobacillus fermentum and Lactobacillus plantarum. Residual maltose remained present in all fermentations, except those with longer backslopping times, and ornithine was found in almost all fermentations, indicating enhanced sourdough-typical LAB activity. The sourdough-typical species Lactobacillus sanfranciscensis was not found. Finally, a nonflour origin for this species was hypothesized.  相似文献   

13.
AIMS: To biochemically characterize the bacteriocin produced by Lactococcus lactis ssp. lactis M30 and demonstrate its effect on lactic acid bacteria (LAB) during sourdough propagation. METHODS AND RESULTS: A two-peptide bacteriocin produced by L. lactis ssp. lactis M30 was purified by ion exchange, hydrophobic interaction and reversed phase chromatography. Mass spectrometry of the two peptides and sequence analysis of the ltnA2 gene showed that the bacteriocin was almost identical to lacticin 3147. During a 20-day period of sourdough propagation the stability of L. lactis M30 was demonstrated, with concomitant inhibition of the indicator strain Lactobacillus plantarum 20, as well as the non-interference with the growth of the starter strain Lact. sanfranciscensis CB1. CONCLUSIONS: In situ active bacteriocins influence the microbial consortium of sourdough LAB and can "support" the dominance of insensitive strains during sourdough fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The in situ bacteriocinogenic activity of selected lactococci enables the persistence of insensitive Lact. sanfranciscensis strains, useful to confer good characteristics to the dough, at a higher cell concentration with respect to other LAB of the same ecosystem.  相似文献   

14.
The study of the microbiotas of 19 Italian sourdoughs used for the manufacture of traditional/typical breads allowed the identification, through a culture-dependent approach, of 20 and 4 species of lactic acid bacteria (LAB) and yeasts, respectively. Numerically, the most frequent LAB isolates were Lactobacillus sanfranciscensis (ca. 28% of the total LAB isolates), Lactobacillus plantarum (ca. 16%), and Lactobacillus paralimentarius (ca. 14%). Saccharomyces cerevisiae was identified in 16 sourdoughs. Candida humilis, Kazachstania barnettii, and Kazachstania exigua were also identified. As shown by principal component analysis (PCA), a correlation was found between the ingredients, especially the type of flour, the microbial community, and the biochemical features of sourdoughs. Triticum durum flours were characterized by the high level of maltose, glucose, fructose, and free amino acids (FAA) correlated with the sole or main presence of obligately heterofermentative LAB, the lowest number of facultatively heterofermentative strains, and the low cell density of yeasts in the mature sourdoughs. This study highlighted, through a comprehensive and comparative approach, the dominant microbiotas of 19 Italian sourdoughs, which determined some of the peculiarities of the resulting traditional/typical Italian breads.  相似文献   

15.
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.  相似文献   

16.
Protein hydrolysis and amino acid metabolism contribute to the beneficial effects of sourdough fermentation on bread quality. In this work, genes of Lactobacillus sanfranciscensis strain DSM 20451 involved in peptide uptake and hydrolysis were identified and their expression during growth in sourdough was determined. Screening of the L. sanfranciscensis genome with degenerate primers targeting prt and analysis of proteolytic activity in vitro provided no indication for proteolytic activity. Proteolysis in aseptic doughs and sourdoughs fermented with L. sanfranciscensis was inhibited upon the addition of an aspartic protease inhibitor. These results indicate that proteolysis was not linked to the presence of L. sanfranciscensis DSM 20451 and that this strain does not harbor a proteinase. Genes encoding the peptide transport systems Opp and DtpT and the intracellular peptidases PepT, PepR, PepC, PepN, and PepX were identified. Both peptide uptake systems and the genes pepN, pepX, pepC, and pepT were expressed by L. sanfranciscensis growing exponentially in sourdough, whereas pepX was not transcribed. The regulation of the expression of Opp, DtpT, and PepT during growth of L. sanfranciscensis in sourdough was investigated. Expression of Opp and DtpT was reduced approximately 17-fold when the peptide supply in dough was increased. The expression of PepT was dependent on the peptide supply to a lesser extent. Thus, the accumulation of amino nitrogen by L. sanfranciscensis in dough is attributable to peptide hydrolysis rather than proteolysis and amino acid metabolism by L. sanfranciscensis during growth in sourdough is limited by the peptide availability.  相似文献   

17.
The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451(T) on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451(T)DeltagshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451(T)DeltagshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 microM to 10.5 microM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451(T)DeltagshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 microM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451(T)DeltagshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.  相似文献   

18.
Genetic diversity of Lactobacillus sanfranciscensis strains isolated from naturally fermented sourdoughs of different origin was evaluated by using randomly amplified polymorphic DNA (RAPD). Computer-assisted comparison of the RAPD patterns revealed a clear separation of L. sanfranciscensis from other obligately heterofermentative Lactobacillus species closely related or normally present in sourdough. Six clusters, five of them constituted by strains of the same origin, were recognized at a similarity level of 63%. Pulsed-field gel electrophoresis (PFGE) results on strains chosen as representative were generally in good agreement with the grouping obtained by RAPD. Both techniques showed a high degree of discriminatory power and indicated the existence of a remarkable genetic polymorphism within the species. Furthermore, the chromosome size of L. sanfranciscensis was estimated by PFGE to be about 1.4 Mb.  相似文献   

19.
AIMS: To characterize the lactobacilli community of 20 sourdoughs using a novel polyphasic approach. METHODS AND RESULTS: A polyphasic approach, consisting of a two-step multiplex polymerase chain reaction (PCR) system, 16S rRNA gene sequence analysis and physiological features, was applied to identify 127 isolates, representing about 37% of the presumptive lactobacilli collected from sourdough samples. Multiplex PCR successfully identified 111 isolates, while 16S rRNA gene sequencing was applied for the other 16 isolates, two of which could not be associated with any previously described lactic acid bacteria (LAB) species. Strain diversity was evaluated by phenotypic and random amplified polymorphic DNA-PCR analysis. Molecular detection of Lactobacillus group species was also performed on total DNA extracted from the doughs. CONCLUSIONS: Abruzzo region sourdough lactobacilli biodiversity, reflected in both Lactobacillus species composition and strain polymorphism, is similar to that of other Italian regions and is a source of novel LAB species. SIGNIFICANCE AND IMPACT OF THE STUDY: Within culture-independent methods, multiplex PCR is a rapid tool to study the lactobacilli population of sourdoughs.  相似文献   

20.
We previously found that Wickerhamomyces anomalus (formerly Hansenula anomala, Pichia anomala) was the second most frequently isolated yeast in Belgian artisan bakery sourdoughs and that the yeast dominated laboratory sourdough fermentations. Such findings are of interest in terms of the advantage of W. anomalus over other commonly encountered sourdough yeasts and its potential introduction into the sourdough ecosystem. Here, we provide a brief overview of current knowledge on yeast ecology and diversity in sourdough in the context of the potential natural habitat of W. anomalus. Insight into the population structure of W. anomalus was obtained by comparing internal transcribed spacer rDNA sequences of selected sourdough isolates with publicly available database sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号