首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that denaturing factors (such as the interaction with membranes) are involved in the structural transition. This work is aimed at determining the effect of hydrophobic Teflon on the conformation of the Abeta (1-40). Prior to adsorption, the secondary structure and self-aggregation state of the Abeta in solution were established as a function of pH. Three different species coexist: unordered monomers/dimers, small oligomers in mainly a regular beta-sheet structure, and bigger aggregates having a twisted beta-sheet conformation. Transferring the Abeta from the solution to the Teflon surface strongly promotes alpha-helix formation. Furthermore, increasing the degree of coverage of the Teflon by the Alphabeta protein leads to a conformational change toward a more enriched beta-sheet structure.  相似文献   

2.
H S Kim  C H Park  S H Cha  J H Lee  S Lee  Y Kim  J C Rah  S J Jeong  Y H Suh 《FASEB journal》2000,14(11):1508-1517
Numerous lines of evidence indicate that some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the amyloid precursor protein (APP). Most research has focused on the amyloid beta peptide (Abeta). However, the possible role of other cleaved products of APP is less clear. We have previously shown that a recombinant carboxy-terminal 105 amino acid fragment (CT 105) of APP induced strong nonselective inward currents in XENOPUS: oocyte; it also revealed neurotoxicity in PC12 cells and primary cortical neurons, blocked later phase of long-term potentiation in rat hippocampus in vivo, and induced memory deficits and neuropathological changes in mice. We report here that the pretreatment with CT 105 for 24 h at a 10 microM concentration increases intracellular calcium concentration by about twofold in SK-N-SH and PC 12 cells, but not in U251 cells, originated from human glioblastoma. In addition, the calcium increase and toxicity induced by CT 105 were reduced by cholesterol and MK 801 in SK-N-SH and PC 12 cells, whereas the toxicity of Abeta(1-42) was attenuated by nifedipine and verapamil. CT 105 rendered SK-N-SH cells and rat primary cortical neurons more vulnerable to glutamate-induced excitotoxicity. Also, conformational studies using circular dichroism experiments showed that CT 105 has approximately 15% of beta-sheet content in phosphate buffer and aqueous 2,2, 2-trifluoroethanol solutions. However, the content of beta-sheet conformation in dodecyl phosphocholine micelle or in the negatively charged vesicles, is increased to 22%-23%. The results of this study showed that CT 105 disrupts calcium homeostasis and renders neuronal cells more vulnerable to glutamate-induced excitotoxicity, and that some portion of CT 105 has partial beta-sheet conformation in various environments, which may be related to the self-aggregation and toxicity. This may be significantly possibly involved in inducing the neurotoxicity characteristic of AD.  相似文献   

3.
Liu D  Xu Y  Feng Y  Liu H  Shen X  Chen K  Ma J  Jiang H 《Biochemistry》2006,45(36):10963-10972
Abeta peptides cleaved from the amyloid precursor protein are the main components of senile plaques in Alzheimer's disease. Abeta peptides adopt a conformation mixture of random coil, beta-sheet, and alpha-helix in solution, which makes it difficult to design inhibitors based on the 3D structures of Abeta peptides. By targeting the C-terminal beta-sheet region of an Abeta intermediate structure extracted from molecular dynamics simulations of Abeta conformational transition, a new inhibitor that abolishes Abeta fibrillation was discovered using virtual screening in conjunction with thioflavin T fluorescence assay and atomic force microscopy determination. Circular dichroism spectroscopy demonstrated that the binding of the inhibitor increased the beta-sheet content of Abeta peptides either by stabilizing the C-terminal beta-sheet conformation or by inducing the intermolecular beta-sheet formation. It was proposed that the inhibitor prevented fibrillation by blocking interstrand hydrogen bond formation of the pleated beta-sheet structure commonly found in amyloid fibrils. The study not only provided a strategy for inhibitor design based on the flexible structures of amyloid peptides but also revealed some clues to understanding the molecular events involved in Abeta aggregation.  相似文献   

4.
The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles. These results indicate that aggregation depends on hydrophobicity and propensity to form beta-sheets of the amyloid peptide, and thus offer new insights into the mechanism of amyloid neurodegenerative disease.  相似文献   

5.
Alzheimer's disease, Huntington's disease and prion diseases are part of a growing list of diseases associated with formation of beta-sheet containing fibrils. In a previous publication, we demonstrated that the self-association of the Alzheimer's beta-amyloid (Abeta) peptide is inhibited by peptides homologous to the central core domain of Abeta, but containing N-methyl amino acids at alternate positions. When these inhibitor peptides are arrayed in an extended, beta-strand conformation, the alternating position of N-methyl amino acids gives the peptide two distinct faces, one exhibiting a normal pattern of peptide backbone hydrogen bonds, but the other face having limited hydrogen-bonding capabilities due to the replacement of the amide protons by N-methyl groups. Here, we demonstrate, through two-dimensional NMR and circular dichroic spectroscopy, that a pentapeptide with two N-methyl amino acids, Abeta16-20m or Ac-K(Me)LV(Me)FF-NH2, does indeed have the intended structure of an extended beta-strand. This structure is remarkably stable to changes in solvent conditions and resists denaturation by heating, changes in pH (from 2.5 to 10.5), and addition of denaturants such as urea and guanindine-HCl. We also show that this peptide, despite its hydrophobic composition, is highly water soluble, to concentrations > 30 mm, in contrast to the nonmethylated congener, Abeta16-20 (Ac-KLVFF-NH2). The striking water solubility, in combination with the hydrophobic composition of the peptide, suggested that the peptide might be able to pass spontaneously through cell membranes and model phospholipid bilayers such as unilamellar vesicles. Thus, we also demonstrate that this peptide is indeed able to pass spontaneously through both synthetic phospholipid bilayer vesicles and cell membranes. Characterization of the biophysical properties of the Abeta16-20m peptide may facilitate the application of this strategy to other systems as diverse as the HIV protease and chemokines, in which there is dimerization through beta-strand domains.  相似文献   

6.
Amyloid beta (Abeta) peptides are one of the classes of amphiphilic molecules that on dissolution in aqueous solvents undergo interesting conformational transitions. These conformational changes are known to be associated with their neuronal toxicity. The mechanism of structural transition involved in the monomeric Abeta to toxic assemblage is yet to be understood at the molecular level. Early results indicate that oriented molecular crowding has a profound effect on their assemblage formation. In this work, we have studied how different microenvironments affect the conformational transitions of one of the active amyloid beta-peptide fragments (Abeta(25-35)). Spectroscopic techniques such as CD and Fourier transform infrared spectroscopy were used. It was observed that a stored peptide concentrates on dissolution in methanol adopts a minor alpha-helical conformation along with unordered structures. On changing the methanol concentration in the solvated film form, the conformation switches to the antiparallel beta-sheet structure on the hydrophilic surface, whereas the peptide shows transition from a mixture of helix and unordered structure into predominantly a beta-sheet with minor contribution of helix structure on the hydrophobic surface. Our present investigations indicate that the conformations induced by the different surfaces dictate the gross conformational preference of the peptide concentrate.  相似文献   

7.
Several proteins and peptides that can convert from alpha-helical to beta-sheet conformation and form amyloid fibrils, including the amyloid beta-peptide (Abeta) and the prion protein, contain a discordant alpha-helix that is composed of residues that strongly favor beta-strand formation. In their native states, 37 of 38 discordant helices are now found to interact with other protein segments or with lipid membranes, but Abeta apparently lacks such interactions. The helical propensity of the Abeta discordant region (K16LVFFAED23) is increased by introducing V18A/F19A/F20A replacements, and this is associated with reduced fibril formation. Addition of the tripeptide KAD or phospho-L-serine likewise increases the alpha-helical content of Abeta(12-28) and reduces aggregation and fibril formation of Abeta(1-40), Abeta(12-28), Abeta(12-24), and Abeta(14-23). In contrast, tripeptides with all-neutral, all-acidic or all-basic side chains, as well as phosphoethanolamine, phosphocholine, and phosphoglycerol have no significant effects on Abeta secondary structure or fibril formation. These data suggest that in free Abeta, the discordant alpha-helix lacks stabilizing interactions (likely as a consequence of proteolytic removal from a membrane-associated precursor protein) and that stabilization of this helix can reduce fibril formation.  相似文献   

8.
Beta-amyloid (1-40) (Abeta), the main component of senile plaques seen in the brains of Alzheimer's disease patients, was found to be toxic both as fibrils and smaller soluble globular aggregates. The hydrolytic properties of Abeta, a new biochemical activity described previously [Brzyska M, Bacia A & Elbaum D (2001) Eur J Biochem 268, 3443-3454], may contribute to its overall toxicity. In this study, the hydrolysis of fluorescein ester series was studied under predetermined conditions affecting Abeta hydrophobicity and conformation. Reaction products of the most effectively decomposed ester (dibutyrate) were characterized using HPLC and ESI-MS. Hydrophobicity of Abeta, as measured by bis-8-anilinonaphthalene fluorescence, correlated with its hydrolytic abilities. FTIR and CD data analysis showed a relationship between enhanced hydrolytic abilities and Abeta structure. Seriously limited hydrolysis caused by higher peptide concentrations is consistent with monomeric/dimeric Abeta species participation in the process, confirmed by thioflavine T binding. Inhibition of hydrolysis was caused by beta-sheet breaker peptide (LPFFD), indicating that the Abeta central hydrophobic cluster (amino acids 17-21) participates in the process. The reported Abeta properties suggest that small conformational alterations of the peptide structure may have a pronounced effect on its functions and biological activity.  相似文献   

9.
In this chapter, we attempt to analyze the evolution of the amyloid-beta (Abeta) molecular structure from its inception as part of the Abeta precursor protein to its release by the secretases and its extrusion from membrane into an aqueous environment. Biophysical studies suggest that the Abeta peptide sustains a series of transitions from a molecule rich in alpha-helix to a molecule in which beta-strands prevail. It is proposed that initially the extended C-termini of two opposing Abeta dimers form an antiparallel beta-sheet and that the subsequent addition of dimers generates a helical Abeta protofilament. Two or more protofilaments create a strand in which the hydrophobic core of the beta-sheets is shielded from the aqueous environment by the N-terminal polar domains of the Abeta dimers. Once the nucleation has occurred, the Abeta filament grows in length by the addition of dimers or tetramers.  相似文献   

10.
Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer beta-amyloid peptides (Abeta40 and Abeta42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Abeta peptides are rich in intermolecular beta-sheet, the precise secondary structure of Abeta in the aggregates remains unclear. To identify the amino acid residues involved in the beta-sheet formation, 34 proline-substituted mutants of Abeta42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in beta-sheet, whereas they are easily accommodated in beta-turn as a Pro-X corner. Among the mutants at positions 15-32, only E22P-Abeta42 extensively aggregated with stronger neurotoxicity than wild-type Abeta42, suggesting that the residues at positions 15-21 and 24-32 are involved in the beta-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Abeta42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Abeta42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Abeta42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Abeta42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the beta-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Abeta42 and Abeta40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Abeta42. The identification of the beta-sheet region of Abeta42 is a basis for designing new aggregation inhibitors of Abeta peptides.  相似文献   

11.
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.  相似文献   

12.
The clathrin-induced fusion of liposome membranes, the membrane binding of clathrin, and the conformational states of clathrin were investigated over a wide pH range using large unilamellar and multilamellar vesicles composed of phosphatidylserine (PS), phosphatidylcholine (PC), PS/PC (2:1), PS/PC (1:1), or PS/PC (1:2). The pH profiles of clathrin-induced fusion of all types of liposomes containing PS showed biphasic patterns. Their pH thresholds were found in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH profiles of clathrin binding to these vesicles, but the pH profiles of binding were different from the biphasic fusion patterns. With PC vesicles, only small degrees of fusion and clathrin binding were observed at pH 2-4. The pH dependences of the conformation and hydrophobicity of clathrin were determined by measuring the extent of the blue shift of the fluorescence maximum of 1-anilinonaphthalene-8-sulfonate in the presence of the protein, the fluorescence intensity of N-(1-anilinonaphthyl-4)maleimide bound to the clathrin molecule, the resonance energy transfer from its tryptophan to anilinonaphthyl residues, the partitioning of the protein in Triton X-114 solution, and the hydrophobicity index of clathrin using cis-parinaric acid. These measurements indicated that conformational change and exposure of hydrophobic regions occur below pH 6 and suggested that clathrin may adopt different conformational states in the pH region where it induced membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The conformational change and associated aggregation of beta amyloid (Abeta) with or without metals is the main cause of Alzheimer's disease (AD). In order to further understand the effects of Abeta and its associated metals on the aggregation mechanism, the influence of Abeta conformation on the metal affinity and aggregation was investigated using circular dichroism (CD) spectroscopy. The Abeta conformation is dependent on pH and trifluoroethanol (TFE). The binding of metals to Abeta was found to be dependent on the Abeta conformation. The aggregation induced by Abeta itself or its associated metals is completely diminished for Abeta in 40% TFE. Only in 5% and 25% TFE can Abeta undergo an alpha-helix to beta-sheet aggregation, which involve a three-state mechanism for the metal-free state, and a two-state transition for the metal-bound state, respectively. The aggregation-inducing activity of metals is in the order, Cu2+ > Fe3+ > or = Al3+ > Zn2+.  相似文献   

14.
Oxidative lipid membrane damage is known to promote the misfolding of Abeta42 into pathological beta structure. In fully developed senile plaques of Alzheimer's disease, however, it is the shorter and more soluble amyloid beta protein, Abeta40, that predominates. To investigate the role of oxidative membrane damage in the misfolding of Abeta40, we have examined its interaction with supported lipid monolayer membranes using internal reflection infrared spectroscopy. Oxidatively damaged lipids modestly increased Abeta40 accumulation, with adsorption kinetics and a conformation that are distinct from that of Abeta42. In stark contrast, pretreatment of oxidatively damaged monolayer membranes with Abeta42 vigorously promoted Abeta40 accumulation and misfolding. Pretreatment of saturated or undamaged membranes with Abeta42 had no such effect. Parallel studies of lipid bilayer vesicles using a dye binding assay to detect fibril formation and electron microscopy to examine morphology demonstrated that Abeta42 pretreatment of oxidatively damaged membranes promoted the formation of mature Abeta40 amyloid fibrils. We conclude that oxidative membrane damage and Abeta42 act synergistically at an early stage to promote fibril formation by Abeta40. This synergy could be detected within minutes using internal reflection spectroscopy, whereas a dye-binding assay required several days and much higher protein concentrations to demonstrate this synergy.  相似文献   

15.
The Alzheimer's peptide a beta adopts a collapsed coil structure in water   总被引:1,自引:0,他引:1  
The self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet structure. Conformational stabilization is primarily attributed to van der Waals and electrostatic forces. A large conspicuous uninterrupted hydrophobic patch covers approximately 25% of the surface. The compact coil structure appears meta-stable, and because fibrillization leads to formation of intermolecular beta-sheet secondary structure, a global conformational rearrangement is highly likely. A molecular hypothesis for amyloidosis includes at least two primary driving forces, changes in solvation thermodynamics during formation of amyloid deposits and relief of internal conformational stress within the soluble precursor during formation of lower-energy amyloid fibrils.  相似文献   

16.
Peptide aggregation in amyloid fibrils is implicated in the pathogenesis of several diseases such as Alzheimer's disease. There is a strong correlation between amyloid fibril formation and a decrease in conformational stability of the native state. Amyloid-beta peptide (Abeta), the aggregating peptide in Alzheimer's disease, is natively unfolded. The deposits found in Alzheimer's disease are composed of Abeta fibrillar aggregates rich in beta-sheet structure. The influence of fluorinated complexes on the secondary structure and fibrillogenesis of Abeta peptide was studied by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). CD spectra show that complexes of polyampholyte and fluorinated dodecanoic acid induce alpha-helix structure in Abeta, but their hydrogenated analogous lead to beta-sheet formation and aggregation. The fluorinated nanoparticles with highly negative zeta potential and hydrophobic fluorinated core have the fundamental characteristics to prevent Abeta fibrillogenesis.  相似文献   

17.
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.  相似文献   

18.
The disruption of intracellular calcium homeostasis plays a central role in the pathology of Alzheimer's disease, which is also characterized by accumulation of the amyloid-beta peptides Abeta40 and Abeta42. These amphipathic peptides may become associated with neuronal membranes and affect their barrier function, resulting in the loss of calcium homeostasis. This suggestion has been extensively investigated by exposing protein-free model membranes, either vesicles or planar bilayers, to soluble Abeta. Primarily unstructured Abeta has been shown to undergo a membrane-induced conformational change to either primarily beta-structure or helical structure, depending, among other factors, on the model membrane composition. Association of Abeta renders lipid bilayers permeable to ions but there is dispute whether this is due to the formation of discrete transmembrane ion channels of Abeta peptides, or to a non-specific perturbation of bilayer integrity by lipid head group-associated Abeta. Here, we have attempted incorporation of Abeta in the hydrophobic core of zwitterionic bilayers, the most simple model membrane system, by preparing proteoliposomes by hydration of a mixed film of Abeta peptides and phosphatidylcholine (PC) lipids. Despite the use of a solvent mixture in which Abeta40 and Abeta42 are almost entirely helical, the Abeta analogs were beta-structured in the resulting vesicle dispersions. When Abeta40-containing vesicles were fused into a zwitterionic planar bilayer, the typical irregular "single channel-like" conductance of Abeta was observed. The maximum conductance increased with additional vesicle fusion, while still exhibiting single channel-like behavior. Supported bilayers formed from Abeta40/PC vesicles did not exhibit any channel-like topological features, but the bilayer destabilized in time. Abeta40 was present primarily as beta-sheets in supported multilayers formed from the same vesicles. The combined observations argue for a non-specific perturbation of zwitterionic bilayers by surface association of small amphipathic Abeta40 assemblies.  相似文献   

19.
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. Alzheimer's disease is pathologically characterized by the presence of numerous insoluble amyloid plaques in the brain, composed primarily of the 42 amino acid human beta-amyloid peptide (Abeta42). Disease-linked mutations in Abeta42 occur in or near a central hydrophobic cluster comprising residues 17-21. We exploited the ability of green fluorescent protein to act as a reporter of the aggregation of upstream fused Abeta42 variants to characterize the effects of a large set of single-point mutations at the central position of this hydrophobic sequence as well as substitutions linked to early onset of the disease located in or close to this region. The aggregational properties of the different protein variants clearly correlated with changes in the intrinsic physicochemical properties of the side chains at the point of mutation. Reduction in hydrophobicity and beta-sheet propensity resulted in an increase of in vivo fluorescence indicating disruption of aggregation, as confirmed by the in vitro analysis of synthetic Abeta42 variants. The results confirm the key role played by the central hydrophobic stretch on Abeta42 deposition and support the hypothesis that sequence tunes the aggregation propensities of polypeptides.  相似文献   

20.
The fully developed lesion of Alzheimer's disease is a dense plaque composed of fibrillar amyloid beta-proteins (Abeta) with a characteristic and well-ordered beta-sheet secondary structure. Because the incipient lesion most likely develops when these proteins are first induced to form beta-sheet structure, it is important to understand factors that induced Abeta to adopt this conformation. In this review, we describe the application of polarized attenuated total internal reflection infrared FT-IR spectroscopy for characterizing the conformation, orientation, and rate of accumulation of Abeta on lipid membranes. We also describe the application and yield of linked analysis, whereby multiple spectra are fit simultaneously with component bands that are constrained to share common fitting parameters. Results have shown that membranes promote beta-sheet formation under a variety of circumstances that may be significant to the pathogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号