首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The insulin and insulin-like growth factor-1 (IGF-1) receptors mediate signaling for energy uptake and growth through insulin receptor substrates (IRSs), which interact with these receptors as well as with downstream effectors. Oxygen is essential not only for ATP production through oxidative phosphorylation but also for many cellular processes, particularly those involved in energy homeostasis. The oxygen tension in vivo is significantly lower than that in the air and can vary widely depending on the tissue as well as on perfusion and oxygen consumption. How oxygen tension affects IRSs and their functions is poorly understood. Our findings indicate that transient hypoxia (1% oxygen) leads to caspase-mediated cleavage of IRS-1 without inducing cell death. The IRS-1 protein level rebounds rapidly upon return to normoxia. Protein tyrosine phosphatases (PTPs) appear to be important for the IRS-1 cleavage because tyrosine phosphorylation of the insulin receptor was decreased in hypoxia and IRS-1 cleavage could be blocked either with H(2)O(2) or with vanadate, each of which inhibits PTPs. Activity of Akt, a downstream effector of insulin and IGF-1 signaling that is known to suppress caspase activation, was suppressed in hypoxia. Overexpression of dominant-negative Akt led to IRS-1 cleavage even in normoxia, and overexpression of constitutively active Akt partially suppressed IRS-1 cleavage in hypoxia, suggesting that hypoxia-mediated suppression of Akt may induce caspase-mediated IRS-1 cleavage. In conclusion, our study elucidates a mechanism by which insulin and IGF-1 signaling can be matched to the oxygen level that is available to support growth and energy metabolism.  相似文献   

2.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) reduces its ability to act as an insulin receptor substrate and inhibits insulin receptor signal transduction. Here, we report that serine phosphorylation of IRS-1 induced by either okadaic acid (OA) or chronic insulin stimulation prevents interferon-alpha (IFN-alpha)-dependent IRS-1 tyrosine phosphorylation and IFN-alpha-dependent IRS-1/phosphatidylinositol 3'-kinase (PI3K) association. In addition, we demonstrate that serine phosphorylation of IRS-1 renders it a poorer substrate for JAK1 (Janus kinase-1). We found that treatment of U266 cells with OA induced serine phosphorylation of IRS-1 and completely blocked IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IFN-alpha-dependent IRS-1/PI3K association. Additionally, IRS-1 from OA-treated cells could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Chronic treatment of U266 cells with insulin led to a 50% reduction in IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IRS-1/PI3K association. More importantly, serine-phosphorylated IRS-1-(511-722) could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Taken together, these data indicate that serine phosphorylation of IRS-1 prevents its subsequent tyrosine phosphorylation by JAK1 and suggest that IRS-1 serine phosphorylation may play a counter-regulatory role in pathways outside the insulin signaling system.  相似文献   

3.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

4.
Insulin receptor substrate-1 (IRS-1) was recently identified as a novel upstream substrate for the insulin-activated protein kinase C (PKC)-zeta. This interaction down-regulates insulin signal transduction under hyper-insulinemic conditions. To clarify the molecular mechanism of this feedback loop, we sought to identify the PKC-zeta phosphorylation sites of IRS-1 and to investigate their biological significance. Upon incubation of recombinant IRS-1 fragments with PKC-zeta, we identified Ser(318) of rat IRS-1 (Ser(323) in human IRS-1) as the major in vitro phosphorylation site (confirmed by mutation of Ser(318) to alanine). To monitor phosphorylation of Ser(318) in cellular extracts, we prepared a polyclonal phosphosite-specific antibody. The biological significance was studied in baby hamster kidney cells stably expressing the insulin receptor (BHK(IR)). Using the phospho-Ser(318)-specific antibody we observed that insulin stimulates phosphorylation of Ser(318) in IRS-1, which is mediated, at least partially, by PKC-zeta. Moreover, we found that the previously described insulin-stimulated, PKC-zeta-mediated inhibition of the interaction of IRS-1 with the insulin receptor and the reduced tyrosine phosphorylation of IRS-1 was abrogated by mutation of IRS-1 Ser(318) to alanine. These results, generated in BHK(IR) cells, suggest that phosphorylation of Ser(318) by PKC-zeta might contribute to the inhibitory effect of prolonged hyperinsulinemia on IRS-1 function.  相似文献   

5.
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.  相似文献   

6.
7.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

8.
Mice made insulin receptor substrate 1 (IRS-1) deficient by targeted gene knockout exhibit growth retardation and abnormal glucose metabolism due to resistance to the actions of insulin-like growth factor 1 (IGF-1) and insulin (E. Araki et al., Nature 372:186-190, 1994; H. Tamemoto et al., Nature 372:182-186, 1994). Embryonic fibroblasts and 3T3 cell lines derived from IRS-1-deficient embryos exhibit no IGF-1-stimulated IRS-1 phosphorylation or IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity but exhibit normal phosphorylation of IRS-2 and Shc and normal IRS-2-associated PI 3-kinase activity. IRS-1 deficiency results in a 70 to 80% reduction in IGF-1-stimulated cell growth and parallel decreases in IGF-1-stimulated S-phase entry, PI 3-kinase activity, and induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases ERK 1 and ERK 2. Expression of IRS-1 in IRS-1-deficient cells by retroviral gene transduction restores IGF-1-stimulated mitogenesis, PI 3-kinase activation, and c-fos and egr-1 induction in proportion to the level of reconstitution. Increasing the level of IRS-2 in these cells by using a retrovirus reconstitutes IGF-1 activation of PI 3-kinase and immediate-early gene expression to the same degree as expression of IRS-1; however, IRS-2 overexpression has only a minor effect on IGF-1 stimulation of cell cycle progression. These results indicate that IRS-1 is not necessary for activation of ERK 1 and ERK 2 and that activation of ERK 1 and ERK 2 is not sufficient for IGF-1-stimulated activation of c-fos and egr-1. These data also provide evidence that IRS-1 and IRS-2 are not functionally interchangeable signaling intermediates for stimulation of mitogenesis despite their highly conserved structure and many common functions such as activating PI 3-kinase and early gene expression.  相似文献   

9.
Recent studies have demonstrated that fatty acids induce insulin resistance in skeletal muscle by blocking insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase). To examine the mechanism by which fatty acids mediate this effect, rats were infused with either a lipid emulsion (consisting mostly of 18:2 fatty acids) or glycerol. Intracellular C18:2 CoA increased in a time-dependent fashion, reaching an approximately 6-fold elevation by 5 h, whereas there was no change in the concentration of any other fatty acyl-CoAs. Diacylglycerol (DAG) also increased transiently after 3-4 h of lipid infusion. In contrast there was no increase in intracellular ceramide or triglyceride concentrations during the lipid infusion. Increases in intracellular C18:2 CoA and DAG concentration were associated with protein kinase C (PKC)-theta activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-kinase activity, which were associated with an increase in IRS-1 Ser(307) phosphorylation. These data support the hypothesis that an increase in plasma fatty acid concentration results in an increase in intracellular fatty acyl-CoA and DAG concentrations, which results in activation of PKC-theta leading to increased IRS-1 Ser(307) phosphorylation. This in turn leads to decreased IRS-1 tyrosine phosphorylation and decreased activation of IRS-1-associated PI3-kinase activity resulting in decreased insulin-stimulated glucose transport activity.  相似文献   

10.
11.
Mitotic catastrophe (MC) is an important oncosuppressive mechanism that serves to eliminate cells that become polyploid or aneuploid due to aberrant mitosis. Previous studies have demonstrated that the activation and catalytic function of caspase-2 are key steps in MC to trigger apoptosis and/or cell cycle arrest of mitotically defective cells. However, the molecular mechanisms that regulate caspase-2 activation and its function are unclear. Here, we identify six new phosphorylation sites in caspase-2 and show that a key mitotic kinase, Aurora B kinase (AURKB), phosphorylates caspase-2 at the highly conserved residue S384. We demonstrate that phosphorylation at S384 blocks caspase-2 catalytic activity and apoptosis function in response to mitotic insults, without affecting caspase-2 dimerisation. Moreover, molecular modelling suggests that phosphorylation at S384 may affect substrate binding by caspase-2. We propose that caspase-2 S384 phosphorylation by AURKB is a key mechanism that controls caspase-2 activation during mitosis.Subject terms: Proteases, Proteolysis  相似文献   

12.
The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to the modulation of insulin signaling, and the PKC-dependent phosphorylation of insulin receptor substrate (IRS)-1 has been implicated in the development of insulin resistance. Here we demonstrate Ser(357) of rat IRS-1 as a novel PKC-delta-dependent phosphorylation site in skeletal muscle cells upon stimulation with insulin and phorbol ester using Ser(P)(357) antibodies and active and kinase dead mutants of PKC-delta. Phosphorylation of this site was simulated using IRS-1 Glu(357) and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation of Akt, and to subsequently diminish phosphorylation of glycogen synthase kinase-3. When the phosphorylation was prevented by mutation of Ser(357) to alanine, these effects of insulin were enhanced. When the adjacent Ser(358), present in mouse and rat IRS-1, was mutated to alanine, which is homologous to the human sequence, the insulin-induced phosphorylation of glycogen synthase kinase-3 or tyrosine phosphorylation of IRS-1 was not increased. Moreover, both active PKC-delta and phosphorylation of Ser(357) were shown to be necessary for the attenuation of insulin-stimulated Akt phosphorylation. The phosphorylation of Ser(357) could lead to increased association of PKC-delta to IRS-1 upon insulin stimulation, which was demonstrated with IRS-1 Glu(357). Together, these data suggest that phosphorylation of Ser(357) mediates at least in part the adverse effects of PKC-delta activation on insulin action.  相似文献   

13.
The protein serine-threonine kinase Akt mediates cell survival signaling initiated by various growth-promoting factors such as insulin. Here we report that SEK1 is a target of Akt in intact cells. Insulin inhibited the anisomycin-induced stimulation of both endogenous SEK1 and its substrate c-Jun N-terminal kinase (JNK), but not that of the upstream kinase MEKK1, in 293T cells. The inhibitory action of insulin on SEK1 or JNK1 activation was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002. Expression of a constitutively active form of Akt also inhibited both SEK1 and JNK1 activation, but not that of MEKK1, in transfected 293T cells. Co-immunoprecipitation analysis revealed that endogenous Akt physically interacted with endogenous SEK1 in cells and that this interaction was promoted by insulin. In vitro and in vivo (32)P labeling indicated that Akt phosphorylated SEK1 on serine 78. The SEK1 mutant SEK1(S78A) was resistant to Akt-induced inhibition. Finally, activated Akt inhibited SEK1-mediated apoptosis, and this effect of Akt was prevented by overexpression of SEK(S78A). Taken together, these results suggest that Akt suppresses stress-activated signaling by targeting SEK1.  相似文献   

14.
Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prognosis. We found that overexpressed IRS-1 was constitutively phosphorylated in vitro and in vivo and that transgenic mice overexpressing IRS-1 or IRS-2 in the mammary gland showed progressive mammary hyperplasia, tumorigenesis, and metastasis. Tumors showed extensive squamous differentiation, a phenotype commonly seen with activation of the canonical beta-catenin signaling pathway. Consistent with this, IRSs were found to bind beta-catenin in vitro and in vivo. IRS-induced tumorigenesis is unique, given that the IRSs are signaling adaptors with no intrinsic kinase activity, and this supports a growing literature indicating a role for IRSs in cancer. This study defines IRSs as oncogene proteins in vivo and provides new models to develop inhibitors against IRSs for anticancer therapy.  相似文献   

15.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.  相似文献   

16.
Fodrin (nonerythroid spectrin) from porcine brain was found to be phosphorylated on tyrosine residues by the purified insulin receptor kinase. The phosphorylation occurred in an insulin-sensitive manner with a physiologically relevant km. The beta(235 K) subunit of fodrin, but not the alpha(240 K) subunit, was phosphorylated by the kinase. Neither the alpha(240 K) subunit nor the beta(220 K) subunit of erythrocyte spectrin was phosphorylated under the same conditions. Fodrin phosphorylation by the purified insulin receptor kinase was markedly inhibited by F-actin. These data raise the possibility that tyrosine phosphorylation of fodrin plays some roles in the regulation of plasma membrane-microfilament interaction.  相似文献   

17.
Phosphorylation by casein kinase 2 regulates Nap1 localization and function   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, the evolutionarily conserved nucleocytoplasmic shuttling protein Nap1 is a cofactor for the import of histones H2A and H2B, a chromatin assembly factor and a mitotic factor involved in regulation of bud formation. To understand the mechanism by which Nap1 function is regulated, Nap1-interacting factors were isolated and identified by mass spectrometry. We identified several kinases among these proteins, including casein kinase 2 (CK2), and a new bud neck-associated protein, Nba1. Consistent with our identification of the Nap1-interacting kinases, we showed that Nap1 is phosphorylated in vivo at 11 sites and that Nap1 is phosphorylated by CK2 at three substrate serines. Phosphorylation of these serines was not necessary for normal bud formation, but mutation of these serines to either alanine or aspartic acid resulted in cell cycle changes, including a prolonged S phase, suggesting that reversible phosphorylation by CK2 is important for cell cycle regulation. Nap1 can shuttle between the nucleus and cytoplasm, and we also showed that CK2 phosphorylation promotes the import of Nap1 into the nucleus. In conclusion, our data show that Nap1 phosphorylation by CK2 appears to regulate Nap1 localization and is required for normal progression through S phase.  相似文献   

18.
Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.  相似文献   

19.
To investigate the role of insulin receptor substrate 1 (IRS-1) and IRS-2, the two ubiquitously expressed IRS proteins, in adipocyte differentiation, we established embryonic fibroblast cells with four different genotypes, i.e., wild-type, IRS-1 deficient (IRS-1(-/-)), IRS-2 deficient (IRS-2(-/-)), and IRS-1 IRS-2 double deficient (IRS-1(-/-) IRS-2(-/-)), from mouse embryos of the corresponding genotypes. The abilities of IRS-1(-/-) cells and IRS-2(-/-) cells to differentiate into adipocytes are approximately 60 and 15%, respectively, lower than that of wild-type cells, at day 8 after induction and, surprisingly, IRS-1(-/-) IRS-2(-/-) cells have no ability to differentiate into adipocytes. The expression of CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) is severely decreased in IRS-1(-/-) IRS-2(-/-) cells at both the mRNA and the protein level, and the mRNAs of lipoprotein lipase and adipocyte fatty acid binding protein are severely decreased in IRS-1(-/-) IRS-2(-/-) cells. Phosphatidylinositol 3-kinase (PI 3-kinase) activity that increases during adipocyte differentiation is almost completely abolished in IRS-1(-/-) IRS-2(-/-) cells. Treatment of wild-type cells with a PI 3-kinase inhibitor, LY294002, markedly decreases the expression of C/EBPalpha and PPARgamma, a result which is associated with a complete block of adipocyte differentiation. Moreover, histologic analysis of IRS-1(-/-) IRS-2(-/-) double-knockout mice 8 h after birth reveals severe reduction in white adipose tissue mass. Our results suggest that IRS-1 and IRS-2 play a crucial role in the upregulation of the C/EBPalpha and PPARgamma expression and adipocyte differentiation.  相似文献   

20.
Incubation of rat hepatoma Fao cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins. This is followed by elevation in their P-Ser/Thr content, and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, abolished the increase in the P-Ser/Thr content of IRS-1, its dissociation from the IR, and the decrease in its P-Tyr content following 60 min of insulin treatment, indicating that the Ser kinases that negatively regulate IRS-1 function are downstream effectors of PI3K. PKCzeta fulfills this criterion, being an insulin-activated downstream effector of PI3K. Overexpression of PKCzeta in Fao cells, by infection of the cells with adenovirus-based PKCzeta construct, had no effect on its own, but it accelerated the rate of insulin-stimulated dissociation of IR.IRS-1 complexes and the rate of Tyr dephosphorylation of IRS-1. The insulin-stimulated negative regulatory role of PKCzeta was specific and could not be mimic by infecting Fao cells with adenoviral constructs encoding for PKC alpha, delta, or eta. Because the reduction in P-Tyr content of IRS-1 was accompanied by a reduced association of IRS-1 with p85, the regulatory subunit of PI3K, it suggests that this negative regulatory process induced by PKCzeta, has a built-in attenuation signal. Hence, insulin triggers a sequential cascade in which PI3K-mediated activation of PKCzeta inhibits IRS-1 functions, reduces complex formation between IRS-1 and PI3K, and inhibits further activation of PKCzeta itself. These findings implicate PKCzeta as a key element in a multistep negative feedback control mechanism of IRS-1 functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号