首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Molecular organization of the cut locus of Drosophila melanogaster   总被引:21,自引:0,他引:21  
J W Jack 《Cell》1985,42(3):869-876
Mutations of the cut locus (ct) of Drosophila can be divided into four groups based on their phenotypes and complementation patterns. Each group alters the phenotype of a different set of tissues. Two hundred kilobases of ct DNA, located in 7B1-2, have been cloned by chromosomal walking, and the cloned sequences have been used to analyze more than 40 mutants. Based on the location of transposable element mutations and the extent of deficiencies and an inversion, four cut locus regions can be defined. Mutations in each region affect the phenotype of a different set of tissues. The most centromere proximal region contains mutations that are null for cut locus function. Within individual regions, a higher level of organization can be detected.  相似文献   

4.
Pig-1 and Sgs-4 are a pair of closely linked and divergently transcribed Drosophila melanogaster genes, which are both expressed in larval salivary glands but at different times during development. While Sgs-4 is expressed at high levels only at the end of the third instar, Pig-1 exhibits a major peak of expression during late second and early third instar. Thus, Pig-1 expression declines as Sgs-4 expression is induced. In this paper, we show that three adjacent elements located within the short region between these genes can account for the switch from Pig-1 to Sgs-4 expression. A 170-bp segment acts as an enhancer to direct Sgs-4 expression in late-third-instar salivary glands. A 64-bp sequence located just upstream from the enhancer can modify its temporal specificity so that it works throughout the third instar. Expression induced at mid-third instar by a combination of these two elements can be repressed by a negative regulatory sequence located still further upstream. We present evidence suggesting that the changing interactions between these regulatory elements and the Sgs-4 and Pig-1 promoters lead to the correct pattern of expression of the two genes.  相似文献   

5.
6.
7.
8.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flamSS (SS) and flamMS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flampy + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco+. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flamSS, flamMS, flampy +(P), and flamenco+ considerably differ from one another in the structure of DIP1. Strains flamss and flamMS have no Dral restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The Dral gene of strainsflamSS andflamMS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tcl/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIPI and, probably, neighboring genes. In strains flamenco+ and flampy + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

9.
The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various insect allatostatins. This resulted in alignment with a DNA sequence coding for some Drosophila allatostatins (drostatins). Using PCR with oligonucleotide primers directed against the presumed exons of this Drosophila allatostatin gene and subsequent 3'- and 5'-RACE, we were able to clone its cDNA. The Drosophila allatostatin preprohormone contains four amino acid sequences that after processing would give rise to four Drosophila allatostatins: Val-Glu-Arg-Tyr-Ala-Phe-Gly-Leu-NH(2) (drostatin-1), Leu-Pro-Val-Tyr-Asn-Phe-Gly-Leu-NH(2) (drostatin-2), Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) (drostatin-3), and Thr-Thr-Arg-Pro-Gln-Pro-Phe-Asn-Phe-Gly-Leu-NH(2) (drostatin-4). Drostatin-2 is identical to helicostatin-2 (11-18) and drostatin-3 to helicostatin-3, two neurohormones previously isolated from the moth Helicoverpa armigera. Furthermore, drostatin-3 has previously been isolated from Drosophila itself. Drostatins-1 and -4 are novel members of the insect allatostatin neuropeptide family. The Drosophila allatostatin preprohormone gene contains two introns and three exons. The gene is located on the right arm of the third chromosome, position 96A-B. The existence of at least four different Drosophila allatostatins opens the possibility of a differential action of some of these hormones on the two recently cloned Drosophila allatostatin receptors, DAR-1 and -2. This is the first report on an allatostatin preprohormone from Drosophila.  相似文献   

10.
《Gene》1997,194(2):169-177
The evolutionarily conserved protein SNAP-25 (synaptosome-associated protein 25 kDa (kilodaltons)) is a component of the protein complex involved in the docking and/or fusion of synaptic vesicles in nerve terminals. We report here that the SNAP-25 gene (Snap) in the fruit fly Drosophila melanogaster has a complex organization with eight exons spanning more than 120 kb (kilobases). The exon boundaries coincide with those of the chicken SNAP-25 gene (Bark, 1993). Only a single exon 5 has been found in Drosophila, whereas human, rat, chicken, zebrafish and goldfish have two alternatively spliced versions of this exon. In situ hybridization and immunocytochemistry to whole mount embryos show that SNAP-25 mRNA and protein are detected in stage 14 and later developmental stages, and are mainly localized to the ventral nerve cord. Thus, Snap has an evolutionarily conserved and complex gene organization, and its onset of expression in Drosophila melanogaster correlates with a time in neuronal development when synapses begin to be formed and when other synapse-specific genes are switched on.  相似文献   

11.
12.
13.
14.
15.
16.
We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.  相似文献   

17.
18.
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that—in addition to recombination rate—the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号