首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between glutathione-containing dinitrosyl iron complexes and superoxide radicals has been studied under the conditions of superoxide radical generation in mitochondria and in a model system xanthine-xanthine oxidase. It has been shown that both superoxide radical and hydroxyl radical are involved in the destruction of dinitrosyl iron complexes. At the same time, iron contained in dinitrosyl iron complex, apparently, does not catalyze the decomposition of hydrogen peroxide with the formation of hydroxyl radical. It has been found that dinitrosyl iron complexes with different anion ligands inhibit effectively the formation of phenoxyl probucol radical in a hemin-H2O2 a system. In this process, different components of the dinitrosyl iron complexes take part in the antioxidant action of these complexes.  相似文献   

2.
It has been shown that interaction of cysteine dinitrosyl iron complexes with methylglyoxal leads to the formation of a new type of dinitrosyl iron complexes, EPR spectrum of these complexes essentially differs from spectra of dinitrosyl iron complexes containing unmodified thiol. The products of the cysteine reaction with methylglyoxal are hemithioacetals, Schiff bases and thiazolidines, which most likely serve as ligands for the new type of dinitrosyl iron complexes. It has been shown that the new type of dinitrosyl iron complexes as cysteine dinitrosyl iron complexes, which are physiological donors of nitric oxide, exert a vasodilator effect. It has also been found that the oxidative destruction of the new type of dinitrosyl iron complexes occurs at normal oxygen partial pressure, but these dinitrosyl iron complexes remain rather stable under hypoxia modeling. An assumption that the destruction of the new type of dinitrosyl iron complexes is caused by the formation of a bound peroxynitrite-containing intermediate is made.  相似文献   

3.
The interaction between the glutathione-containing dinitrosyl iron complexes and the superoxide radical generated in mitochondria and in the xanthine-xanthine oxidase system was studied. Both superoxide and hydroxyl radicals proved to be involved in destruction of dinitrosyl iron complexes. However, the iron within dinitrosyl complexes is unlikely to catalyze decomposition of hydrogen peroxide yielding hydroxyl radical. It was found that iron dinitrosyl complexes with various anion ligands efficiently inhibited the formation of probucol phenoxyl radical in the hemin-H2O2 system, different components of these complexes being involved in the antioxidant action.  相似文献   

4.
The beneficial action of dinitrosyl iron complex with glutathione on conjunctive veins of eyes in rabbits with experimental thrombosis of conjunctive veins has been demonstrated. Aqueous solutions of dinitrosyl iron complexes were added subconjunctively at doses of 5.4-8.1 micromole per eye. The average duration of thrombosis by the action of dinitrosyl iron complex decreased from 6.4 days in control animals to 2 days. The addition of dinitrosyl iron complex resulted in blood flow recovery in occlusive vessels and prevented ischemia and necrosis of tissues. The enhancement of hemorrhagic activity induced by dinitrosyl iron complexes was abrogated with combined addition of the nonselective NO synthase inhibitor N-nitro-L-arginine. In contrast, S-nitrosoglutathione affected adversely the veins: the duration of thrombosis in experimental thrombosis of conjunctive veins increased to 7 days. Intensive hemorhage developed in the conjunctive. The formation of protein-bound dinitrosyl iron complexes was observed by the EPR method in eye tissues after the subconjunctive or parabulbar addition of dinitrosyl iron complex with glutathione. This was not the case when the complex was injected intravenously. It was shown that dinitrosyl iron complex with glutathione induces the blockade of pellet aggregation or strengthens the fibrinolytic activity of plasma of patients with eye vessel pathology. The beneficial action of dinitrosyl iron complexes on conjunctive veins was proposed to be due to the capacity of dinitrosyl iron complexes to donate NO primarily to its biological targets. The release of free NO molecules in large amounts is not characteristic for dinitrosyl iron complexes. This process is characteristic of S-nitrosoglutathione, which sharply increases the probability of the accumulation of peroxynitrite, which produces a toxic effect on cells and tissues.  相似文献   

5.
Using EPR spectroscopy it was established that Fe ions released from ferritin under the action of glutathione and superoxide took part in the formation of dinitrosyl complexes of iron with glutathione (DNIC). The reaction between O2-. and NO resulted in the formation of peroxynitrite, which oxidized glutathione to the thiyl radical. In these conditions, DNIC did not inhibit the formation of thiyl radicals but effectively slowed down the oxidative destruction of beta-carotene by peroxynitrite and free radicals of lipids. In the presence of glutathione, the inversion of the antioxidant properties of DNIC into prooxidant ones took place. S-nitrosoglutathione prevented this inversion and suppressed the free-radical oxidation of beta-carotene induced by ferritin. It was proposed that the equilibrium between S-nitrosoglutathione, DNIC, "free Fe" ions and ferritin may determine the balance between prooxidant and antioxidant processes in living organisms.  相似文献   

6.
The effect of iron dinitrosyl complexes, S-nitrosoglutathione, and glutathione on free radical oxidation of rat heart mitochondria induced by tert-butyl hydroperoxide and metmyoglobin or their combination with ferritin was studied. It was shown that iron dinitrosyl complexes or the combination of S-nitrosoglutathione and glutathione inhibited most effectively the peroxidation of mitochondrial membranes. It was found that ferritin stimulated the prooxidant action of metmyoglobin. Using EPR spectroscopy, it was established that, in conditions of O2*- generation, the destruction of iron dinitrosyl complexes took place. Iron dinitrosyl complexes also inhibited the formation of thiyl radicals, which appeared during O2*- generation in the system containing glutathione and S-nitrosoglutathione. It is essential that the formation of iron dinitrosyl complexes in this reaction system took place with the involvement of ferritin. It was proposed that the prooxidant action of ferritin and myoglobin could be inverted to the antioxidant one.  相似文献   

7.
It has been shown that various nitric oxide donors and metabolites have similar effects on lipid peroxidation in rat myocardium homogenate. The formation of malondialdehyde, a secondary product of lipid peroxidation, was inhibited in a dose-dependent manner by PAPA/NONO (a synthetic nitric oxide donor), S-nitrosoglutathione, nitrite, and nitroxyl anion. The inhibition of lipid peroxidation was provided most efficiently by the administration of dinitrosyl-iron complexes with dextran and PAPA/NONO. S-nitrosoglutathione also inhibited the destruction of coenzymes Q9 and Q10 during free radical oxidation of myocardium homogenate. Low-molecular-weight dinitrosyl iron complexes with cysteine also promoted lipid peroxidation, which is probably due to iron release during the destruction dinitrosyl iron complexes. It is likely that the antioxidant action of nitric oxide derivatives is related to the reduction of ferry forms of hemoproteins and interaction of nitric oxide with lipid radicals.  相似文献   

8.
It was found that dinitrosyl iron complexes (DNIC) with thiol-containing ligands (cysteine or glutathione) of concentrations up to 1 mM produce no cytotoxic effect on cultured cells from human milk gland carcinoma (MCF-7). The cytotoxic action on MCF-7 cells was produced by S-nitrosocysteine: at a concentration of 1 mM, it induced the death of 50% cells. A more stable S-nitrosothiol, S-nitrosoglutathione, did not produce any cytotoxic effect at the same concentration. It is assumed that the negative action of nitrosocysteine is due to its rapid degradation, which results in the accumulation of large amounts of free NO molecules followed by their oxidation by superoxide ions to peroxynitrite, an efficient inhibitor of metabolic processes. These processes seem to be not characteristic of the more stable S-nitrosoglutathione. The cytotoxic effect of nitrosocysteine was completlly abrogated by the addition of 0.2 mM ferrous citrate complex to the medium. When S-nitrosoglutathione NO (0.5 mM) or S-nitrosoglutathione (0.5 mM) + Fe(2+)-citrate (0.2 mM) were added to the medium, protein-bound dinitrosyl iron complexes formed with the involvement of endogenous or exogenous iron were detected in cells. The amount of the complexes in the presence of exogenous iron increased four times, reaching the value of 1.6 nmole/5 x 10(6) cells. Therefore, it was proposed that the blockade of the cytotoxic action of S-nitrosoglutathione by iron complexes is due to Cys-NO transformation of S-nitrosocysteine into dinitrosyl iron complexes. The high stability of these complexes ensures only a gradual accumulation of nitric oxide in cells.  相似文献   

9.
Dinitrosyl iron complexes (DNIC) bound to BSA are shown to be destroyed by superoxide radicals generated in the xanthine oxidase-xanthine system. Peroxynitrite is also efficient in this respect. By contrast, neither hydrogen peroxide nor tert-butyl hydroperoxide appreciably destroy BSA-DNIC even at a tenfold molar excess. Evidence is obtained for the vasodilatory properties of BSA-DNIC. It is suggested that in this way peroxynitrite and superoxide radical can affect the physiological functions of nitric oxide.  相似文献   

10.
Vanin AF 《Biofizika》2006,51(6):965-967
It has been shown earlier that, in a system NO + Fe2+ + thiols in aqueous solution, an oscillatory mode of changes with time in the concentration of paramagnetic dinitrosyl iron complexes with thiol-containing legends and S-nitrosothiols formed in this system and in the concentration of free iron (not included into dinitrosyl iron complexes) can be realized. It is assumed that, in this system, autowaves can arise, which ensure periodic changes with time and space in the concentration of the system constituents. These changes may underlie the regulation of the physiologic effect of nitric oxide, dinitrosyl iron complexes, and S-nitrosothiols as agents affecting various intracellular and tissue targets.  相似文献   

11.
It has been shown that the hypotensive action of the nitric oxide donor, the dinitrosyl complex of iron with glutathione, on the organism of healthy rats, which is caused by a decrease in the general peripherical immunity, does not impair the microcirculation and is accompanied by an enhancement of the contractile activity of the myocardium. In hypotension caused by the dinitrosyl iron complex, neither the tension of oxygen and nitrogen in the blood nor its basic-acidic status changes. Thus, the possible inhibitory action of this complex on some enzymes and proteins in the animal organism does not affect the functioning of the heart, vessels, and blood. The dinitrosyl iron complex with glutathione only causes a decrease in arterial pressure. It is assumed that these complexes as well as dinitrosyl complexes of iron with other thiol ligands may be considered as the basis for designing a novel type of drugs for the treatment of cardiovascular diseases.  相似文献   

12.
A beneficial effect of dinitrosyl iron complexes (DNIC) with thiol-containing ligands on penile cavernus tissue was shown in rats subjected to penile denervation. Histological and histochemical investigations demonstrated that intracavernous injections of dinitrosyl iron complexes (2 times per one week during 6 months) blocked the reinforcement of endothelial cell proliferation in the tissue characteristic of the cavernous tissue when the penile nerve was removed. On the other hand, treatment with dinitrosyl iron complexes led to the preservation of mitotic activity of smooth myocytes and protected against the appearance in these cells of collagenase, an indicator of muscle transformation into fibrous tissue. It was shown that the process of fibrous transformation of myocytes correlates with a decrease in the mitotic activity of fibroblasts in the adventive part of cavernosa. The mitotic activity increased in cavernous tissue in the absence of dinitrosyl iron complexes. The efficiency of long-term action of dinitrosyl iron complexes on the erection in both intact animals and animals subjected to neuroectomy of cavernous tissue nerve was shown. The injection of low-molecular dinitrosyl iron complexes to the cavernous tissue resulted in the formation of protein-bound dinitrosyl iron complexes in the tissue, which were detected by the EPR technique. It is assumed that these dinitrosyl iron complexes function as a depot of nitric oxide, providing long-lasting penis erection.  相似文献   

13.
A. F. Vanin 《Biophysics》2006,51(6):851-852
The NO + Fe2+ + thiols system in an aqueous solution has been found earlier to exhibit temporal oscillatory changes in the concentration of paramagnetic dinitrosyl iron complexes with thiol-containing ligands and S-nitrosothiols, as well as in the concentration of free iron (not included in the complexes). It is proposed that autowaves can appear in this system characterized by periodic changes in the concentrations of its components in time and space. Such changes may form a basis for the control of the physiological effects of nitric oxide, dinitrosyl iron complexes, and S-nitrosothiols as agents affecting various cellular and tissue targets.  相似文献   

14.
It has been established that, in the presence of S-nitrosothiols, cysteine, and mitochondria, dinitrosyl iron complexes (DNIC) coupled to low-molecular-weight ligands and proteins are formed. The concentration of DNIC depended on oxygen partial pressure. It was shown that, under the conditions of hypoxia, the kinetics of the formation of low-molecular DNIC was biphasic. After the replacement of anaerobic conditions of incubation with aerobic ones, the level of DNIC came down; in this case, protein dinitrosyl complexes became more stable. We proposed that iron-and sulfur-containing proteins and low-molecular-weight iron complexes are the sources of iron for DNIC formation in mitochondrial suspensions. It was shown that a combination of DNIC and S-nitrosothiols inhibited effectively the respiration of cardiomyocytes.  相似文献   

15.
Vanin  A. F.  Telegina  V. I.  Mikoyan  V. D.  Tkachev  N. A.  Vasilieva  S. V. 《Biophysics》2022,67(5):761-767
Biophysics - This study demonstrates a bacteriostatic effect of binuclear dinitrosyl iron complexes with glutathione on Escherichia coli TN300 cells. It has been quantified by the colony formation...  相似文献   

16.
Free iron content has been estimated in autotrophic and heterotrophic bacteria. It constituted 40-50 micrograms/g dry weight as compared to 15 micrograms/g dry weight in animal cells. A method for estimation of free iron has been proposed. It is based on formation of paramagnetic dinitrosyl iron complexes by free iron and protein thiol groups or low molecular weight thiol ligands. The reasons for high iron content in bacteria have been discussed.  相似文献   

17.
Mikoyan  V. D.  Burgova  E. N.  Borodulin  R. R.  Vanin  A. F. 《Biophysics》2020,65(6):972-980

The levels of the mononitrosyl iron complex with diethyldithiocarbamate that form in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite, or the vasodilating drug isosorbide dinitrate (Isoket®) have been assessed by electron paramagnetic resonance (EPR). The levels of the complex in mice that received binuclear dinitrosyl iron complexes with thiol-containing ligands or S-nitrosoglutathione do not change after the treatment of liver preparations with the strong reducing agent dithionite, in contrast to those formed after nitrite or isosorbide dinitrate administration, whose levels sharply increase after the same treatment. It is inferred that in the latter case an EPR-active mononitrosyl iron complex with diethyldithiocarbamate is produced with the absence or presence of dithionite in the reaction of NO formed from nitrite with Fe2+-diethyldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the former case, the mononitrosyl iron complex with diethyldithiocarbamate is produced by transition of iron-mononitrosyl fragments from already present iron-dinitrosyl groups of binuclear dinitrosyl complexes, whose content is three to four times higher than the content of the mononuclear form of these complexes in the tissue. The results we obtained indicate that when dinitrosyl iron complexes with thiol-containing ligands, either introduced into the body or produced with the participation of endogenous NO, appear in animal tissues in vivo, these complexes are presented in these tissues mainly in their diamagnetic, EPR-silent binuclear form.

  相似文献   

18.
The formation of dinitrosyl iron complexes with thiol-containing ligands in plant tissues (parsley and apple leaves) in the presence of nitric monoxide was demonstrated using electron paramagnetic resonance. In two types of tissues dinitrosyl iron complexes are predominantly represented by the binuclear diamagnetic form. This diamagnetic form can be transformed in EPR-detectable mononitrosyl iron complexes with diethyldithiocarbamate due to the ability of diethyldithiocarbamate to accept the iron-mononitrosyl groups from iron-dinitrosyl fragments of binuclear complexes. A similar transformation was observed under the effect of diethyldithiocarbamate on a mononuclear paramagnetic form of dinitrosyl iron complexes. The significant amount of binuclear dinitrosyl iron complexes found in plant tissues suggests that these complexes can be considered as a “working form” of nitric monoxide, which is recognized now as a universal regulator of metabolic processes in plants as well as in other organisms.  相似文献   

19.
Different nitric oxide donors and metabolites proved to have similar effects on the peroxidation in rat myocardium homogenate. PAPA-NONOate (synthetic nitric oxide donor), S-nitrosoglutathione, nitrite, and nitroxyl anion caused dose-dependent inhibition of the formation of malonic dialdehyde, a secondary product of lipid peroxidation. Dextran-bound dinitrosyl iron complexes and PAPA-NONOate were the most efficient inhibitors of lipid peroxidation. S-Nitrosoglutathione also inhibited the decline in coenzymes Q9 and Q10. Low-molecular-weight dinitrosyl iron complexes with cysteine accelerated lipid peroxidation, which could be caused by the release of iron ions upon their destruction. The antioxidant effect of nitric oxide donors appears to be due to the reduction of hemoprotein ferryl forms and the reaction of nitric oxide with lipid radicals.  相似文献   

20.
The antitumor activity of the binuclear form of dinitrosyl iron complexes with glutathione against Lewis lung carcinoma was found earlier with intraperitoneal administration of the complexes. This activity was also observed when this preparation was injected subcutaneously. The complex inhibited the tumor growth by 43% upon subcutaneous injection at a daily dose of 100 µM/kg (as calculated per one iron atom in the binuclear dinitrosyl iron complex) for 10 or 15 days. The effect was observed during the first 2 weeks after tumor transplantation. After this, the tumors began to grow at a rate that was equal to or even higher than that for the control animals. The mean survival time for the treated mice exceeded the control values by 30%. Binuclear dinitrosyl iron complexes were also effective against Ca-755 adenocarcinoma with intraperitoneal administration. In this case, however, the mean survival time for the treated animals only increased by 7%. It was also shown that S-nitrosoglutathione inhibited the growth of Lewis lung carcinoma and Ca-755 adenocarcinoma by 70 and 90%, respectively. However, in contrast to binuclear dinitrosyl iron complexes, the antitumor effect of S-nitrosoglutathione decreased with an increase in the daily dose of the compound from 200 to 400 µM/kg. The initial antitumor effect of binuclear dinitrosyl iron complexes and S-nitrosoglutathione is suggested to be due to NO that is released from both compounds. The subsequent suppression of the effect is caused by the activation of antinitrosative and antioxidant defense systems in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号