首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitella flexilis cells are not stimulated to "shock stoppage" of cyclosis by suddenly evacuating the air over the water or on sudden readmission of air, or on suddenly striking a piston in the water-filled chamber in which they are kept with a ball whose energy is 7.6 joules, provided the Nitella cell is not moved by currents against the side of the chamber. Sudden increases in hydrostatic pressure from zero to 1000 lbs. or 0 to 5000 lbs. per square inch or 5000 to 9000 lbs. per square inch usually do not stimulate to "shock stoppage" of cyclosis, but some cells are stimulated. Sudden decreases of pressure are more likely to stimulate, again with variation depending on the cell. In the absence of stimulation, the cyclosis velocity at 23°C. slows as the pressure is increased in steps of 1000 lbs. per square inch. In some cells a regular slowing is observed, in others there is little slowing until 4000 to 6000 lbs. per square inch, when a rapid slowing appears, with only 50 per cent to 30 per cent of the original velocity at 9000 lbs. per square inch. The cyclosis does not completely stop at 10000 lbs. per square inch. The pressure effect is reversible unless the cells have been kept too long at the high pressure. At low temperatures (10°C.) and at temperatures near and above (32°–38°C.) the optimum temperature for maximum cyclosis (35–36°C.) pressures of 3000 to 6000 lbs. per square inch cause only further slowing of cyclosis, with no reversal of the temperature effect, such as has been observed in pressure-temperature studies on the luminescence of luminous bacteria. Sudden increase in temperature may cause shock stoppage of cyclosis as well as sudden decrease in temperature.  相似文献   

2.
Plants of wheat (Triticum aestivum) were grown at 23°C. After 17 days they were suddenly transferred to 4°C under the same light conditions. The change in temperature produced an increase in the level of sucrose and fructans. Following the chilling shock, enzymes related to sucrose metabolism were measured. The activities of fructose 1,6-biphosphatase, UDPGlc pyrophosphorylase, sucrose phosphate synthase (SPS), UDPase and invertase were not modified even after 8 days at 4°C. On the contrary, the activity of sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13) rose continuously, immediately after the chilling shock.  相似文献   

3.
The optimal temperature policy that maximizes the time-averaged productivity of a continuous immobilized enzyme packed bed reactor is determined. This optimization study takes into consideration the enzyme thermal deactivation with substrate protection during the reactor operation. The general case of reversible Michaelis-Menten kinetics under constant reactor feed flow rate is assumed. The corresponding nonlinear optimization problem is solved using the calculus of variations by applying the disjoint policy. This policy reduces the optimization problem into a differential-algebraic system, DAE. This DAE system defines completely the optimal temperature-time profiles. These profiles depend on the kinetic parameters, feed substrate concentration, operating period, and the residence time and are characterized by increasing form with time. Also, general analytical expressions for the slopes of the temperature and residual enzyme activity profiles are derived. An efficient solution algorithm is developed to solve the DAE system, which results into a one-dimensional optimization problem with simple bounds on the initial feed temperature. The enzymatic isomerization of glucose into fructose is selected as a case study. The computed productivities are very close to that obtained by numerical nonlinear optimization with simpler problem to solve. Moreover, the computed conversion profiles are almost constant over 90% of the operating periods, thus producing a homogeneous product.  相似文献   

4.
Summary Saccharomyces cerevisiae was immobilised by adsorption to untreated sugar cane bagasse in a packed bed reactor. Complete conversion of glucose to ethanol was obtained at a dilution rate of 0.19 h−1. Continuous ethanol production was maintained for up to 57 days. Reactor productivity increased with increasing packing density of the bagasse. Plugging of void spaces due to cell overgrowth led to channelling of the feed and decreased reactor productivity. Increasing the average column temperature alleviated plugging and restored column performance over a short period; however prolonged exposure to the high temperature resulted in decreased ethanol production rates. Bagasse has advantages as a support material for ethanol production from sugar cane or beet, including negligible cost, ready availability and the capacity to support a high yeast population.  相似文献   

5.
Synthetic wastewater containing 2,4-dichlorophenol (DCP) was biologically treated using a hybrid-loop bioreactor system consisting of a packed column biofilm reactor (PCBR) and an aerated tank with effluent recycle. Effects of the feed DCP concentration on COD, DCP and toxicity removals were investigated. Biomass concentration in the packed column and in the aeration tank decreased with increasing feed DCP content due to toxic effects of DCP on the microorganisms. Low biomass concentrations at high DCP contents resulted in low COD, DCP and toxicity removals. Therefore, percent DCP, COD and toxicity removals decreased with increasing feed DCP content. Nearly 70% COD removal was achieved with a feed DCP content of 380 mg L(-1). The system should be operated with the feed DCP lower than 100 mg L(-1) in order to obtain DCP, COD and toxicity removals above 90%.  相似文献   

6.
The effect of substrate protection on enzyme deactivation was studied in a differential bed and a packed bed reactor using a commercial immobilized glucose isomerase (Swetase, Nagase Co.). Experimental data obtained from differential bed reactor were analyzed based on Briggs-Haldane kinetics in which enzyme deactivation accompanying the protection of substrate was considered. The deactivation constant of the enzyme-substrate complex was found to be about half of that of the free enzyme. The mathematical analysis describing the performance of a packed bed reactor under the considerations of the effects of substrate protection, diffusion resistance, and enzyme deactivation was studied. The system equations for the packed bed reactor were solved using an orthogonal collocation method. The presence of substrate protection and the diffusion effect within the enzyme particles resulted in an axial variation of effectiveness factor, eta(D), along the length of the packed bed. The axial distribution profile of eta(D) was found to be dependent on the operation temperature, Based on the effect of substrate protection, a better substrate feed policy could be theoretically found for promoting productivity in long-term operation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Morphological and dynamic characteristics of epidermal mucus cells were examined in intact scales of Cyprinus carpio. Mucus cells were identified by alcian blue staining and live mucus cells characterized with differential interference contrast microscopy. Mucus cell pores were shown to be narrow slits or triangular‐shaped openings which are invariably situated at cell‐cell junctions. Small granules were often located at or just below the openings with larger granules positioned deeper into the cell. The large granules were observed to undergo a bubbling‐like activity, where a granule suddenly appears, enlarges and then abruptly disappears. Situated below the large granules is a dense matrix of quiescent small, tightly packed mucin granules. The findings suggest that mature epidermal mucus cells are structurally ordered with respect to secretory activity, where small numbers of initially basally located, densely packed granules rapidly expand in a location proximal to the pore and presumably prior to mucus release through the pore.  相似文献   

8.
A mouse model for the "sudden death" and "malarial lung" syndromes is described. Mice of the C3H/z strain succumb suddenly approximately 7 days after an infection with Plasmodium berghei becomes patent, at a time when parasitemia is still moderate (6 to 8%). Death could be shown to be due to anaphylactoid shock, probably induced by soluble immune complexes. Increased vascular permeability caused transudation and leakage of serum proteins into the interstitium and the alveoli. The lungs were found to be edematous, with a fine granular precipitate in the alveoli and adherent to the vascular walls. The precipitates reacted with antiglobulins G and M, and could be shown to also contain malaria antigens and C3/4. A dramatic drop in hematocrit was recorded several hours before death, indicating the sudden release of malaria antigens. The myocardium of animals that had died very suddenly showed a patchy loss of phosphorylase activity. This loss of activity was much more extensive, and sometimes almost total, when there had been an agonal period of several (1 to 3) hours before death. In these cases the irreversibility of the myocardial damage was also indicated by the loss of activity of the dehydrogenases, as well as by typical inflammatory reactions of granulocytic and histiocytic infiltrations. The hearts thus presented a typical picture of the acute and peracute shock syndromes. In acute shock cardiac insufficiency develops so suddenly that death ensues before irreversible damage has occurred, and cardiac insufficiency can only be demonstrated by the most sensitive of enzyme histochemical means. In the present case shock was induced by the anaphylactoid activity of immune complexes with the lung as target organ. The described syndrome appears analogous to human "malarial lung."  相似文献   

9.
Summary Continuous ethanol production byS. uvarum immobilized in a low-gelling temperature agarose namely SeaPlaque agarose was studied in a packed bed reactor at 30°C using sugarcane molasses containing 13.5% fermentable sugars as feed. The productivity at 95% conversion was 23 g/l.h (on reactor volume basis). The bioreactor was run continuously at a fixed dilution rate and it retained 60% of its initial activity upto 80 days.  相似文献   

10.
Continuous hydrolysis of triglyceride in organic solvent systems using Rhizopus arrhizus mycelia as a source of insolubilized lipase has been studied in packed-bed and stirred-tank reactors. Typically a packed bed reactor containing 1 g of mycelia fed at 1 mL/min with a solution of 2.5% (w/v) olive oil in di-isopropyl ether gave a fatty acid yield of 45% at 30°C. The optimum water concentration was found to be 0.17% (w/v) except under conditions of high oil feed concentration and high yield where no optimum was established. No temperature optimum was observed over the range 20–55°C. Calculated activation energies of 13–20 kJ/mol, depending on temperature, were lower, while Km(app) values of 0.1–0.3M were higher than those for hydrolysis in conventional aqueous emulsion systems. No evidence of any significant diffusional limitation, which could account for these values, was obtained. The mycelia showed a loss of activity of 0.6–1.0%h at 30°C. The packed bed proved markedly superior to the stirred tank for this system.  相似文献   

11.
The influences of various experimental parameters on the dynamic adsorption capacity (DAC) and the dynamic adsorption rate (DAR) of a biomimetic affinity silica-based adsorbent in fluidized and packed bed columns operated under plug flow conditions and at different temperatures have been investigated with different inlet concentrations of hen egg white lysozyme (HEWL) and human serum albumin (HSA). The DACs as well as the DARs of both the fluidized and packed beds were examined at 10% saturation (i.e., at the QB value) and the experimental data compared with the corresponding data obtained from batch equilibrium adsorption procedures. Parameters examined included the fluid superficial velocity and protein concentration and their effect on the binding capacity and column efficiency. Consistent with various results reported from this and other laboratories on the behavior of biospecific affinity adsorbents derived from porous silica and zirconia particles, adsorbents prepared from Fractosil 1000 were found to exhibit appropriate rheological characteristics in fluidized bed systems under the experimental conditions. Moreover, changes in temperature resulted in a more significant effect on the breakthrough profiles of HSA compared to HEWL with the immobilized Cibacron Blue F3G-A with Fractosil 1000 adsorbent. This result suggests that temperature effects can possibly be employed profitably in some processes as part of a strategy to enhance column performance with fluidized bed systems for selective recovery of target proteins. At relatively low superficial velocities of the feed, the DARs with HEWL and HSA were similar for both the fluidized and packed bed column systems, whereas, at high superficial velocities, the DARs for these proteins were larger with the packed bed columns.  相似文献   

12.
The catalytic activity of amyloglucosidase covalently attached to DEAE-cellulose was studied in a packed bed reactor and a continuous feed stirred tank reactor (CSTR) for the reaction maltose → glucose. At low flow rates mass-transfer limitations in the bed reactor lead to lower conversions for this reactor compared to the CSTR. Simple theoretical expressions for these reactors were compared with the experimental results. There are significant differences between the kinetic parameters and pH profile of the immobilized and free enzyme. The immobilized enzyme also showed greater stability at 50°C than did free amyloglucosidase. The temperature dependence of the reaction rate was the same for immobilized and free enzyme.  相似文献   

13.
Summary Two patients on which a successful operation of the stomach had been performed developed fever some days after the operation, notwithstanding a prophylactic treatment with sulphapyridine and both of them died rather suddenly respectively 9 and 10 days after the operation. On obduction in both cases hemorrhagic serous-cellular bronchopneumonia were found in the caudal parts of the lungs, all the organs were very hyperaemious and the heart did not show any alteration. To account for the fatal course the possibility of chemospecific anaphylaxis to sulphapyridine has been considered. We succeeded in inducing in guinea pigs by means of sulphapyridine a shock, which, however, did not result in death. Such a shock could be induced as early as five days after sensibilization. The adding of the filtrate of inflammated lung tissue resulted in a deadly shock. In this connection the surmisal was made that also in the patients a sensibilization by sulphapyridine had occurred and that the pneumonia, which as such could not sufficiently account for the death, has furthered the arising of shock. We have pointed to the various facts which disagree with the identification of the phenomenon observed with an anaphylactic shock. We mention, however, that there is a certain agreement with the phenomenon ofSanarelli-Shartzman and that ofGlaubach.  相似文献   

14.
Heat-induced reversible hexagonal packing of spindle microtubules   总被引:3,自引:2,他引:1       下载免费PDF全文
Epithelial cells cultured from the lung of the Northwest rough-skinned newt (Taricha granulosa granulosa) were subjected to brief (10-15 min) elevated temperature shocks of 33 degrees-36 degrees C during metaphase. Electron microscope studies on these cells reveal that the spindle microtubules (Mts) are differentially stable to heat treatment. The great majority of nonkinetochore Mts are destroyed within the first few minutes of the shock while kinetochore and adjacent Mts rearrange to form hexagonal closely packed structures before disassembling, the latter occurring only after prolonged heat treatment. The significance and theoretical implications of the formation of hexagonal closely packed Mt structures and of the differential stability of spindle Mts to heating are discussed. The data suggest the existence of one or more heat-sensitive structural component(s) which maintain the individual minimum spacing seen between spindle Mts. To our knowledge, this is the first reported instance of the experimental rearrangement of kinetochore Mts into reversible, hexagonal closely packed bundles.  相似文献   

15.
The transport and binding properties of a novel hybrid particle-nonwoven membrane medium are described. In this construct, a polymeric chromatographic resin is entrapped between two layers of a nonwoven polypropylene membrane. The membrane-supported resin medium offers the advantage of increased interstitial pore diameter to allow passage of cells and other debris in the feed, while providing sufficiently high surface area for product capture within the resin particles. Columns packed with PIM displayed excellent flow distribution and had interstitial porosities of 0.48 ± 0.01, 25-60% larger than those typical of a packed bed. These columns were able to pass over 95% of E. coli cells and human red blood cell concentrate in 30 column volumes while maintaining a pressure drop significantly lower than that of a packed bed with a similar amount of resin. The dynamic binding capacity of bovine serum albumin (BSA) to the chromatographic resin entrapped in the PIM packed column was essentially the same as that observed with the same volume of resin in a packed bed. The General Rate (GR) model of chromatography was used to analyze experiments indicating the breakthrough behavior of the PIM columns is predictable, and very similar to those of a normal packed bed. These results suggest that PIM constructs can be designed to process viscous mobile phases containing particulates while retaining the desirable binding characteristics of the embedded chromatographic resin and could find uses in adsorption separation processes from complex feed streams such as whole blood, cell culture, and food processing.  相似文献   

16.
Biodesulfurization (BDS) in a bioreactor packed with a catalytic bed of silica containing immobilized Rhodococcus rhodochrous was studied. Various bed lengths and support particle sizes were evaluated for BDS of dibenzothiophene (DBT) and gas oil. The sulfur-containing substrates were introduced separately into the bioreactor at different feed flows. Higher removal of sulfur from DBT and gas oil was achieved with a long bed, lower substrate flow, and larger sizes of immobilization particles. The packed bed bioreactor containing metabolic active cells was recycled and maintained BDS activity.  相似文献   

17.
Naphthalene degradation by freely suspended and immobilized cells of Pseudomonas sp. isolated from contaminated effluents has been investigated in batch cultures and continuously in a packed bed reactor. Naphthalene concentration was varied from 25 mM to 75 mM, the temperature (30 degrees C) and pH (7.0) were kept constant. The results showed good acclimation of the strain to carbon source and degradation rate was highly affected by initial concentration. Alginate-entrapped cells have given good yields although initial rates were not as high as those encountered with free cells. A first order exponential decay kinetic model was proposed with values of parameters for each initial concentration. A laboratory scale packed-bed bioreactor was designed using parameters calculated above and continuous experiments were realized at different flow rates (100 to 200 ml/h), with different feed concentrations and operating during 30 days. The conversion at low feed concentrations and low flow rates was complete whereas at high flow rates and high concentrations it was less efficient because of diffusional limitations and short residence time.  相似文献   

18.
Sudden and gradual increases of temperature in aquatic environments play important roles in determining growth and physiological dynamics of aquatic macrophytes. However, a lesser attention has been paid to identify the effects of different temperature regimes on aquatic macrophytes. Therefore, the present study is focused on comparing the effects of shock and gradual heat stresses (SHS and GHS) on growth, photosynthetic attributes, and oxidative damage on Elodea nuttallii as a model plant. Laboratory-oriented two experimental setups were maintained to induce the SHS and GHS. A significant decline in shoot elongation coupled with a decline in endogenous indoleacetic acid (IAA) and an increase in hydrogen peroxide (H2O2) was observed in both temperature treatments. These effects were further accompanied by oxidative damage to photosynthetic pigments and cell membrane structures in E. nuttallii. Temperature-mediated oxidative stress was significantly pronounced under SHS, which induced the activation of different defensive mechanisms against reactive oxygen species, including antioxidant enzymes, secondary metabolites, and osmoprotectants. The present study revealed that temperature-induced oxidative damage was more severe when the temperature increased suddenly. Further, heat acclimation was observed when the plant was exposed to 30 °C under GHS, although this treatment induces significant oxidative stress under 35 °C.  相似文献   

19.
Limpets are marine mollusks that use mineralized teeth, one of the hardest and strongest biomaterials, to feed on algae on intertidal rocks. However, most of studies only focus on the ultrastructure and chemical composition of the teeth while the molecular information is largely unknown, limiting our understanding of this unique and fundamental biomineralization process. The study investigates the microstructure, proteomics, and crystallization in the teeth of limpet Cellana toreuma. It is found that the limpets formed alternatively tricuspid teeth and unicuspid teeth. Small nanoneedles are densely packed at the tips or leading regions of the cusps. In contrast, big nanoneedles resembling chemically synthesized goethite are loosely packed in the trailing regions of the cusps. Proteins extracted from the whole radula, such as ferritin, peroxiredoxin, arginine kinase, GTPase‐Rabs, and clathrin, are identified by proteomics. A goethite‐binding experiment coupled with proteomics and RNA‐seq highlights six chitin‐binding proteins (CtCBPs). Furthermore, the extracted proteins from the cusps of radula or the framework chitin induce packing of crystals and possibly affect crystal polymorphs in vitro. This study provides insight into the unique biomineralization process in the limpet teeth at the molecular levels, which may guide biomimetic strategies aimed at designing hard materials at room temperature.  相似文献   

20.
Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号