首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.  相似文献   

2.
We evaluated the hypothesis that the N-terminal region of the replication control protein Cdc6 acts as an inhibitor of cyclin-dependent kinase (Cdk) activity, promoting mitotic exit. Cdc6 accumulation is restricted to the period from mid-cell cycle until the succeeding G1, due to proteolytic control that requires the Cdc6 N-terminal region. During late mitosis, Cdc6 is present at levels comparable with Sic1 and binds specifically to the mitotic cyclin Clb2. Moderate overexpression of Cdc6 promotes viability of CLB2Deltadb strains, which otherwise arrest at mitotic exit, and rescue is dependent on the N-terminal putative Cdk-inhibitory domain. These observations support the potential for Cdc6 to inhibit Clb2-Cdk, thus promoting mitotic exit. Consistent with this idea, we observed a cytokinesis defect in cdh1Delta sic1Delta cdc6Delta2-49 triple mutants. However, we were able to construct viable strains, in three different backgrounds, containing neither SIC1 nor the Cdc6 Cdk-inhibitory domain, in contradiction to previous work. We conclude, therefore, that although both Cdc6 and Sic1 have the potential to facilitate mitotic exit by inhibiting Clb2-Cdk, mitotic exit nevertheless does not require any identified stoichiometric inhibitor of Cdk activity.  相似文献   

3.
Krishnan R  Pangilinan F  Lee C  Spencer F 《Genetics》2000,156(2):489-500
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.  相似文献   

4.
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.  相似文献   

5.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

6.
Saccharomyces cerevisiae cells containing one or more abnormal kinetochores delay anaphase entry. The delay can be produced by using centromere DNA mutations present in single-copy or kinetochore protein mutations. This observation is strikingly similar to the preanaphase delay or arrest exhibited in animal cells that experience spontaneous or induced failures in bipolar attachment of one or more chromosomes and may reveal the existence of a conserved surveillance pathway that monitors the state of chromosome attachment to the spindle before anaphase. We find that three genes (MAD2, BUB1, and BUB2) that are required for the spindle assembly checkpoint in budding yeast (defined by antimicrotubule drug-induced arrest or delay) are also required in the establishment and/or maintenance of kinetochore-induced delays. This was tested in strains in which the delays were generated by limited function of a mutant kinetochore protein (ctf13-30) or by the presence of a single-copy centromere DNA mutation (CDEII delta 31). Whereas the MAD2 and BUB1 genes were absolutely required for delay, loss of BUB2 function resulted in a partial delay defect, and we suggest that BUB2 is required for delay maintenance. The inability of mad2-1 and bub1 delta mutants to execute kinetochore-induced delay is correlated with striking increases in chromosome missegregation, indicating that the delay does indeed have a role in chromosome transmission fidelity. Our results also indicated that the yeast RAD9 gene, necessary for DNA damage-induced arrest, had no role in the kinetochore-induced delays. We conclude that abnormal kinetochore structures induce preanaphase delay by activating the same functions that have defined the spindle assembly checkpoint in budding yeast.  相似文献   

7.
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2Delta strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1Delta cells especially at S phase. In contrast, the cds1Deltaswi1Delta mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.  相似文献   

8.
The Schizosaccharomyces pombe rad60 gene is essential for cell growth and is involved in repairing DNA double-strand breaks. Rad60 physically interacts with and is functionally related to the structural maintenance of chromosomes 5 and 6 (SMC5/6) protein complex. In this study, we investigated the role of Rad60 in the recovery from the arrest of DNA replication induced by hydroxyurea (HU). rad60-1 mutant cells arrested mitosis normally when treated with HU. Significantly, Rad60 function is not required during HU arrest but is required on release. However, the mutant cells underwent aberrant mitosis accompanied by irregular segregation of chromosomes, and DNA replication was not completed, as revealed by pulsed-field gel electrophoresis. The deletion of rhp51 suppressed the aberrant mitosis of rad60-1 cells and caused mitotic arrest. These results suggest that Rhp51 and Rad60 are required for the restoration of a stalled or collapsed replication fork after release from the arrest of DNA replication by HU. The rad60-1 mutant was proficient in Rhp51 focus formation after release from the HU-induced arrest of DNA replication or DNA-damaging treatment. Furthermore, the lethality of a rad60-1 rqh1Delta double mutant was suppressed by the deletion of rhp51 or rhp57. These results suggest that Rad60 is required for recombination repair at a step downstream of Rhp51. We propose that Rhp51-dependent DNA structures that cannot activate the mitotic checkpoints accumulate in rad60-1 cells.  相似文献   

9.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

10.
11.
Fission yeast checkpoint protein Rad17 is required for the DNA integrity checkpoint responses. A fraction of Rad17 is chromatin bound independent of the other checkpoint proteins throughout the cell cycle. Here we show that in response to DNA damage induced by either methyl methanesulfonate treatment or ionizing radiation, increased levels of Rad17 bind to chromatin. Following S-phase stall induced by hydroxyurea or a cdc22 mutation, the chromatin-bound Rad17 progressively dissociates from the chromatin. After S-phase arrest by hydroxyurea in cds1Delta or rad3Delta cells or by replication mutants, Rad17 remains chromatin bound. Rad17 is able to complex in vivo with an Rfc small subunit, Rfc2, but not with Rfc1. Furthermore, cells with rfc1Delta are checkpoint proficient, suggesting that Rfc1 does not have a role in checkpoint function. A checkpoint-defective mutant protein, Rad17(K118E), which has similar nuclear localization to that of the wild type, is unable to bind ATP and has reduced ability in chromatin binding. Mutant Rad17(K118E) protein also has reduced ability to complex with Rfc2, suggesting that Lys(118) of Rad17 plays a role in Rad17-Rfc small-subunit complex formation and chromatin association. However, in the rad17.K118E mutant cells, Cds1 can be activated by hydroxyurea. Together, these results suggest that Rad17 binds to chromatin in response to an aberrant genomic structure generated from DNA damage, replication mutant arrest, or hydroxyurea arrest in the absence of Cds1. Rad17 is not required to bind chromatin when genomic structures are protected by hydroxyurea-activated Cds1. The possible checkpoint events induced by chromatin-bound Rad17 are discussed.  相似文献   

12.
Cyclical inactivation of B-type cyclins has been proposed to be required for alternating DNA replication and mitosis. Destruction box-dependent Clb5p degradation is strongly increased in mitotic cells, and constitutive overexpression of Clb5p lacking the destruction box resulted in rapid accumulation of inviable cells, frequently multiply budded, with DNA contents ranging from unreplicated to apparently fully replicated. Loss of viability correlated with retention of nuclear Clb5p at the time of nuclear division. CLB2-Deltadb overexpression that was quantitatively comparable to CLB5-Deltadb overexpression with respect to Clb protein production and Clb-associated kinase activity resulted in a distinct phenotype: reversible mitotic arrest with uniformly replicated DNA. Simultaneous overexpression of CLB2-Deltadb and CLB5-Deltadb overexpressers similarly resulted in a uniform arrest with replicated DNA, and this arrest was significantly more reversible than that observed with CLB5-Deltadb overexpression alone. These results suggest that Clb2p and not Clb5p can efficiently block mitotic completion. We speculate that CLB5-Deltadb overexpression may be lethal, because persistence of high nuclear Clb5p-associated kinase throughout mitosis leads to failure to load origins of replication, thus preventing DNA replication in the succeeding cell cycle.  相似文献   

13.
14.
DNA damage can occur due to environmental insults or intrinsic metabolic processes and is a major threat to genome stability. The DNA damage response is composed of a series of well coordinated cellular processes that include activation of the DNA damage checkpoint, transient cell cycle arrest, DNA damage repair, and reentry into the cell cycle. Here we demonstrate that mutant cells defective for TOR complex 2 (TORC2) or the downstream AGC-like kinase, Gad8, are highly sensitive to chronic replication stress but are insensitive to ionizing radiation. We show that in response to replication stress, TORC2 is dispensable for Chk1-mediated cell cycle arrest but is required for the return to cell cycle progression. Rad52 is a DNA repair and recombination protein that forms foci at DNA damage sites and stalled replication forks. TORC2 mutant cells show increased spontaneous nuclear Rad52 foci, particularly during S phase, suggesting that TORC2 protects cells from DNA damage that occurs during normal DNA replication. Consistently, the viability of TORC2-Gad8 mutant cells is dependent on the presence of the homologous recombination pathway and other proteins that are required for replication restart following fork replication stalling. Our findings indicate that TORC2 is required for genome integrity. This may be relevant for the growing amount of evidence implicating TORC2 in cancer development.  相似文献   

15.
To investigate cell cycle regulation at the S or G2 phase in Saccharomyces cerevisiae, we have isolated mutants displaying supersensitivity to hydroxyurea (HU), a chemical that inhibits DNA replication. Such mutants, which we have named hydroxyurea sensitive (hys), defined four linkage groups and we characterized the hys2 mutation in this study. The hys2-1 mutant displays temperature sensitive growth and a constellation of phenotypes indicating defective DNA metabolism. At the restrictive temperature, hys2-1 cells arrest as large budded cells with a single nucleus at the neck of the bud and a short spindle. The hys2-1 mutant exhibits increased rates of chromosome loss and recombination. Additionally, hys2-1 appears to accumulate incompletely replicated DNA that can be detected by a pulse field electrophoresis assay. Finally, deletion of RAD9 in a hys2-1 strain decreases the percentage of arrested cells, suggesting that an intact RAD9-checkpoint is required for the cell cycle arrest in hys2-1 cells. HYS2 encodes a 55 kDa protein that is essential for viability at all temperatures. Taken together, these data suggest that Hys2 plays a role in DNA replication.  相似文献   

16.
Cyclin-dependent kinase (CDK) is required for the initiation of chromosomal DNA replication in eukaryotes. In Saccharomyces cerevisiae, the Clb5 and Clb6 cyclins activate Cdk1 and drive replication origin firing. Deletion of CLB5 reduces initiation of DNA synthesis from late-firing origins. We have examined whether checkpoints are activated by loss of Clb5 function and whether checkpoints are responsible for the DNA replication defects associated with loss of Clb5 function. We present evidence for activation of Rad53 and Ddc2 functions with characteristics suggesting the presence of DNA damage. Deficient late origin firing in clb5Delta cells is not due to checkpoint regulation, but instead, directly reflects the decreased abundance of S-phase CDK, as Clb6 activates late origins when its dosage is increased. Moreover, the viability of clb5Delta cells depends on Rad53. Activation of Rad53 by either Mrc1 or Rad9 contributes to the survival of clb5Delta cells, suggesting that both DNA replication and damage pathways are responsive to the decreased origin usage. These results suggest that reduced origin usage leads to stress or DNA damage at replication forks, necessitating the function of Rad53 in fork stabilization. Consistent with the notion that decreased S-CDK function creates stress at replication forks, deletion of RRM3 helicase, which facilitates replisome progression, greatly diminished the growth of clb5Delta cells. Together, our findings indicate that deregulation of S-CDK function has the potential to exacerbate genomic instability by reducing replication origin usage.  相似文献   

17.
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.  相似文献   

18.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

19.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号