首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to test the existence of Gestalt colony odour in Camponotus fellah. We isolated individual workers to prevent trophallaxis, allogrooming and body contact. After 20 days, the cuticular hydrocarbon profile of the isolated ants diverged from that of the parent colony. Moreover, each isolated individual had its own specific blend. This procedure showed that after about 20 days of isolation there was a turnover of the colony odour, revealing the genetically expressed hydrocarbon profile of each individual. It also showed that the cuticular hydrocarbon profile is polymorphic, and that its homogeneity within a colony is maintained by frequent exchanges of hydrocarbons between workers. Behavioural observations of resident workers, in their nest, towards nestmates reintroduced after isolation indicated that a short isolation period (3-5 days), which induced a minor change in hydrocarbon profile, provoked frequent trophallactic solicitations. These were likely to permit the isolated ants to readjust their hydrocarbon profile to that of the ants in the mother colony. Longer isolation periods (20-40 days) induced a greater change in hydrocarbon profile and made the residents intolerant towards their introduced nestmates. Therefore, our results clearly support the existence of a Gestalt colony odour in C. fellah. They also show that since individual hydrocarbon production is dynamic, workers are obliged to exchange hydrocarbons continually (mainly by trophallaxis) in order to be in the Gestalt, and properly integrate into the colony. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

2.
To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems.  相似文献   

3.
Summary Social isolation provides a useful tool to study nestmate recognition in ants. In Camponotus fellah, reintroduction of 10-day isolated (IS) workers to their colony resulted in intensive trophallaxis and grooming, while longer isolation periods generally provoked rejection of the IS ants. In the first experiment the behaviour of queenless (QL) and queenright (QR) workers towards 10-day IS workers was tested. Trophallaxis of QL or QR with IS workers was of similar magnitude, but was significantly higher than that among the QL or QR, or that between QL and QR workers. Allogrooming was mostly initiated by the resident non-isolated ants (QL or QR) possibly because they detected a slight mismatch between the IS ants odour and their own template, which represents the group odour. It appears that the presence/absence of the queen did not affect nestmate recognition cues of workers.The second experiment demonstrated that 20-day IS workers were strongly aggressed by colony guards, irrespective of whether they were QL or QR. However, if they were permitted to exchange trophallaxis and grooming with 5 young nestmates (companion ants) for 5 days before reintroduction to their colony, aggression was greatly reduced, irrespective of the origin of the companion ants (QR or QL). Chemical analysis showed a significant divergence between the hydrocarbon profiles of IS and both QL and QR groups, but a prior contact of the IS workers with companion ants resulted in re-convergence of their profile with that of the colony. These results demonstrate that nestmate recognition cues are exchanged between workers via trophallaxis and grooming and that they are not dominated by queen cues, two conditions that fulfil Gestalt nestmate recognition signals requirements.Received 26 February 2003; revised 24 July 2003; accepted 1 August 2003.  相似文献   

4.
Abstract. . Societies of the ant Cataglyphis iberica (Hymenoptera, Formicidae) comprise several satellite queenless nests around a queenright nest. During spring, at the end of hibernation, the incidence of adult transport between these nests is high, but it decreases during summer. Quantitative analyses of the contents of postpharyngeal glands of transporter and transportee ants reveal the amounts of hydrocarbons to be lower in the latter, indicating that these ants are generally younger. Moreover, the more diverse composition of the transportees' secretion may reflect their individual makeup. Transporters, in contrast, maintained a uniform colony odour uirough trophallactic exchanges before entering hibernation. The odour disparity between the transportees and the general colony odour may stimulate the transporters to bear them to the nest containing the queen where they can obtain the colony odour via trophallaxis. The intense traffic between satellite nests in the spring may thus be the means by which a uniform colonial odour is regained after hibernation. Adult transport seems also to be necessary since the young transportee ants are not able to orient themselves and find the other nests.  相似文献   

5.
Workers of the temporary parasitic ant Lasius sp. were perfectly compatible with their hosts Lasius fuliginosus. Aggression was never seen between allospecific nestmates in either field or laboratory. In the laboratory, trophallaxis and allogrooming between allospecific nestmates were statistically more frequent than that between conspecifics. These ants were highly aggressive toward individuals of either species from another mixed colony located 1 km away, indicating that they discriminated nestmates and nonnestmates regardless of the species to which they belonged. No aggressive actions, however, were observed between two neighboring mixed nests located 5 m apart. We have not considered, however, the relationship of the two neighboring nests: the two nests may have been two subunits of the same family or sister colonies, or may have been different colonies but discriminated from distant aliens. Gas chromatography analysis on the total cuticular extracts showed that Lasius sp. and L. fuliginosus possess distinct cuticular profiles, even though they were collected from the same mixed colony. Received: December 13, 1999 / Accepted: April 25, 2000  相似文献   

6.
Summary Within and between individuals hydrocarbon (HC)-circulation was studied in Pachycondyla apicalis workers, using radioactive labeling. Newly synthesized HCs occurred both in the PPG and on the epicuticle in appreciable amounts, lesser quantities were found in the crop. The front basitarsal brush contained a greater amount of radiolabeled HCs than could be predicted from its surface area, suggesting preferential secretion to these organs. We propose that the newly synthesized HCs are secreted primarily to the front basitarsal brushes and are thereafter either distributed throughout the body surface, or cleared via the PPG and the alimentary canal.Using labeled HCs as a model, we tracked the time-dependent dispersion of cuticular lipids among 11 workers, one of which was prelabeled for 24 hours. Distribution among the recipients became progressively uniform, reaching near homogenization between 5–10 days. The mean HCs transfer of P. apicalis to the PPG was substantially lower compared to that of Camponotus fellah or Aphaenogaster senilis. In contrast, transfer to the cuticle in this species was superior. We attribute the low transfer to the PPG to the inefficacy of passive body contact characteristic of P. apicalis, as opposed to trophallaxis and/or allogrooming that typify the other two species. The higher occurrence of radiolabeled HCs in P. apicalis cuticle can be attributed to their accumulation in the basitarsal brushes. The impact of cuticular lipid transfer and formation of uniform colony odour, as opposed to the maintenance of an idiosyncratic caste-specific composition, are discussed.Received 5 September 2002; revised 17 January 2003; accepted 10 February 2003.  相似文献   

7.
Summary In Chile, Camponotus morosus and Solenopsis gayi sometimes co-inhabit a single nest, seemingly in a parabiotic association. To elucidate the nature of this association we conducted behavioural tests that measured aggression between homo- and allospecific ants. These tests revealed that C. morosus was aggressive towards alien conspecific and allospecific ants, but tolerated allospecific individuals from the same parabiotic society as well as allospecific individuals from a different parabiotic colony. In contrast S. gayi was much more tolerant towards alien ants whether homo- or allospecific and irrespective of their colony of origin, parabiotic or non-parabiotic.Chemical analyses showed that each species possess a distinct cuticular hydrocarbons profile. Moreover, each species tended to keep its specific profile even when living in association with the other species, in spite of very little acquired allospecific chemicals in C. morosus, dismissing chemical mimicry as the basis of the peaceful co-existence. We hypothesise that the switch from aggression to tolerance as a consequence of parabiotic association exhibited by C. morosus is due to a familiarisation as well as memorisation of the allospecific colonial odour. The finding that the parabiotic C. morosus was tolerant to S. gayi, even if they originated from a non-parabiotic nest points to an odour generalisation ability in this species.Received 12 July 2002; revised 15 January and 11 April 2003; accepted 23 April 2003.  相似文献   

8.
Chemical recognition cues are used to discriminate among species, con‐specifics, and potentially between patrilines in social insect colonies. There is an ongoing debate about the possible persistence of patriline cues despite evidence for the mixing of colony odors via a “gestalt” mechanism in social insects, because patriline recognition could lead to nepotism. We analyzed the variation in recognition cues (cuticular hydrocarbons) with different mating frequencies or queen numbers in 688 Formica exsecta ants from 76 colonies. We found no increase in the profile variance as genetic diversity increased, indicating that patriline effects were absent or possibly obscured by a gestalt mechanism. We then demonstrated that an isolated individual's profile changed considerably relative to their colony profile, before stabilizing after 5 days. We used these isolated individuals to eliminate the masking effects of the gestalt mechanism, and we detected a weak but statistically significant patriline effect in isolated adult workers and also in newly emerged callow workers. Thus, our evidence suggests that genetic variation in the cuticular hydrocarbon profile of F. exsecta ants (n‐alkanes and alkenes) resulted in differences among patrilines, but they were obscured in the colony environment, thereby avoiding costly nepotistic behaviors.  相似文献   

9.
Animals in social groups need to differentiate between group members and others. In very large groups, such as those formed by many ant species, it is not possible to rely on individually specific cues to identify colonymates. Instead, recognition must be based on the colony-specific cues. Individual ant colonies tend to have a specific chemical gestalt that is maintained by the continual exchange of chemicals between workers. In very large polydomous colonies, the exchange of chemicals may be limited between nests within the colony, resulting in inter-nest variation in colony odour that might hinder identification of colonymates or conspecific intruders. We used near-infrared spectroscopy to explore variation in the chemical profile between and within colonies of the weaver ant Oecophylla smaragdina. We found that differences between colonies were reflected in the position, amplitude and width of spectral peaks, while differences between nests within colonies were reflected mainly in amplitude. Furthermore, in the context of colonymate recognition, the behaviour of the ants themselves was positively correlated with colony-specific spectral characteristics, rather than with nest-specific characteristics. Thus, colony spectra have features that are not obscured by intra-colonial variation and may potentially encode the chemical characteristics used by workers to identify colonymates.  相似文献   

10.
We investigated how group members achieve collective decision-making, by considering individual intrinsic behavioural rules and behavioural mechanisms for maintaining social integration. Using a simulated burrow environment, we investigated the behavioural rules of coordinated workload for soil distribution in a eusocial mammal, the naked mole-rat (Heterocephalus glaber). We tested two predictions regarding a distinct role of the queen, a socially dominant individual in the caste system: the presence of a queen would increase the workload of other caste individuals, and the cues by a queen would affect the soil distribution. In experiment 1, we placed four individuals of various castes from the same colony into an experimental burrow. Workers exhibited the highest frequency of workload compared to other castes. The presence of a queen activated the workload by other individuals. Individuals showed a consistent workload in a particular direction so as to bias the soil distribution. These results suggest that individuals have a consensus on soil distribution and that the queen plays a distinct role. In experiment 2, we placed the odour of a queen in one of four cells and observed its effect on other individuals' workload and soil distribution. Relative to other cells, individuals frequently dug in the queen cell so the amount of soil in the queen cell decreased. These results suggest that queen odour is an important cue in coordinated workload and soil distribution in this species.  相似文献   

11.
Recognition systems play a key role in a range of biological processes, including mate choice, immune defence and altruistic behaviour. Social insects provide an excellent model for studying recognition systems because workers need to discriminate between nestmates and non-nestmates, enabling them to direct altruistic behaviour towards closer kin and to repel potential invaders. However, the level of aggression directed towards conspecific intruders can vary enormously, even among workers within the same colony. This is usually attributed to differences in the aggression thresholds of individuals or to workers having different roles within the colony. Recent evidence from the weaver ant Oecophylla smaragdina suggests that this does not tell the whole story. Here I propose a new model for nestmate recognition based on a vector template derived from both the individual’s innate odour and the shared colony odour. This model accounts for the recent findings concerning weaver ants, and also provides an alternative explanation for why the level of aggression expressed by a colony decreases as the diversity within the colony increases, even when odour is well-mixed. The model makes additional predictions that are easily tested, and represents a significant advance in our conceptualisation of recognition systems.  相似文献   

12.
Exocrine glands play an important role in maintaining the integrity of colonies of social Hymenoptera. The postpharyngeal gland (PPG) of ants is crucial for the generation of a nest odour that enables nestmate recognition. The evolutionary history of this gland is unknown and it was thought to be restricted to ants. Here we describe an exocrine head gland in females of a solitary crabronid wasp, the European beewolf, Philanthus triangulum, that resembles the PPG of ants in many respects. The newly described gland has the same location and the same glove like shape as in ants, and it also has a monolayered epithelium with similar ultrastructure. Unlike in ants, the epithelium bears hairs that reach into the lumen of the gland. Although the PPG of beewolves serves a completely different function it is also associated to an allogrooming behaviour as in ants. Based on these morphological and behavioural similarities as well as similarities in the chemical composition of the content of the PPG of both taxa, we hypothesise that the PPGs of ants and beewolves have a common evolutionary origin. Thus, our results suggest that the PPG in ants might not have evolved in response to social requirements but might have already existed in solitary predecessors.  相似文献   

13.
Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses ("variolation" or "inoculation").  相似文献   

14.
Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching.  相似文献   

15.
Prenatal olfactory learning has been demonstrated in a wide variety of animals, where it affects development and behaviour. Young ants learn the chemical signature of their colony. This cue-learning process allows the formation of a template used for nest-mate recognition in order to distinguish alien individuals from nest-mates, thus ensuring that cooperation is directed towards group members and aliens are kept outside the colony. To date, no study has investigated the possible effect of cue learning during early developmental stages on adult nest-mate recognition. Here, we show that odour familiarization during preimaginal life affects recognition abilities of adult Aphaenogaster senilis ants, particularly when the familiarization process occurs during the first larval stages. Ants eclosed from larvae exposed to the odour of an adoptive colony showed reduced aggression towards familiar, adoptive individuals belonging to this colony compared with alien individuals (true unfamiliar), but they remained non-aggressive towards adult individuals of their natal colony. Moreover, we found that the chemical similarity between the colony of origin and the adoptive colony does not influence the degree of aggression, meaning that the observed effect is likely to be due only to preimaginal learning experience. These results help understanding the developmental processes underlying efficient recognition systems.  相似文献   

16.
Summary We tested matureAtta laevigata colonies in the field to see if the ants used queen substances, environmental odours (in this case odours produced by the nest's fungi), an odour produced by each individual, or a gestalt odour (resulting from odours distributed between nestmates) as a discrimination signal for nestmate recognition. We found that nestmate recognition inA. laevigata appears to be largely based on an odour produced by each nestmate which appears to be concentrated in the head, although other odours may also be used. We found no evidence of genetic relatedness influencing the discrimination ability, nor did ants respond differently to neighbors in comparison to non-neighbors.  相似文献   

17.
In ants, individuals live in tightly integrated units (colonies) and work collectively for its success. In such groups, stable intraspecific variation in behaviour within or across contexts (personality) can occur at two levels: individuals and colonies. This paper examines how colony size and nestmate density influence the collective exploratory behaviour of Formica fusca (Hymenoptera: Formicidae), in the laboratory. The housing conditions of the colonies were manipulated to vary the size of colonies and their densities under a fully factorial design. The results demonstrate the presence of colony behavioural repeatability in this species, and contrary to our expectations, colonies were more explorative on average when they were kept at lower nestmate densities. We also found that experimental colonies created from larger source colonies were more explorative, which conveys that a thorough understanding of the contemporary behaviour of a colony may require knowing its social history and how it was formed. Our results also convey that the colony size and nestmate density can have significant effects on the exploratory behaviour of ant colonies.  相似文献   

18.
Bos N  Grinsted L  Holman L 《PloS one》2011,6(4):e19435
Social animals use recognition cues to discriminate between group members and non-members. These recognition cues may be conceptualized as a label, which is compared to a neural representation of acceptable cue combinations termed the template. In ants and other social insects, the label consists of a waxy layer of colony-specific hydrocarbons on the body surface. Genetic and environmental differences between colony members may confound recognition and social cohesion, so many species perform behaviors that homogenize the odor label, such as mouth-to-mouth feeding and allogrooming. Here, we test for another mechanism of cue exchange: indirect transfer of cuticular hydrocarbons via the nest material. Using a combination of chemical analysis and behavioral experiments with Camponotus aethiops ants, we show that nest soil indirectly transfers hydrocarbons between ants and affects recognition behavior. We also found evidence that olfactory cues on the nest soil influence nestmate recognition, but this effect was not observed in all colonies. These results demonstrate that cuticular hydrocarbons deposited on the nest soil are important in creating uniformity in the odor label and may also contribute to the template.  相似文献   

19.
In the eusocial Hymenoptera, reproductive division of labour is a key aspect of colony organisation. In most of its species, workers are sterile and are unable to reproduce, while the queen monopolises reproduction. When workers are able to reproduce, a conflict with the queen or with other workers over male production is predicted. Because this reproduction may involve costs for the colony, the potential conflict over male parentage gives rise to important questions, such as what are the proximate mechanisms that allow a queen to control the reproductive potential of its workers, and which factors make some workers fertile and others not. In the groups where it occurs, an important mechanism for the regulation of reproduction is trophallaxis (the process of mutual feeding through regurgitation that occurs in several species of social insects). Trophallaxis gives dominant individuals a trophic advantage by taking nutrients from submissive individuals. In advanced eusocial species of bees, trophallaxis may also serve as an alternative hierarchical interaction in the absence of agonistic conflicts. In this way, trophallaxis not only represents an alternative path for hierarchical interactions, but it may be evolutionary linked to intracolonial conflict among workers.  相似文献   

20.
In ants, postpharyngeal glands are; the reservoir for the colonial odour which mediates the interindividual recognition. Quantitative and qualitative changes in colonial hydrocarbon profile of these glands were studied in the ant Cataglyphis iberica from emergence of workers. Isolation of callow seems to affect the maturation process. The glandular secretion of the callow workers increases in amount and becomes similar to that of mature workers around 10 d old. However, the rate of hydrocarbon accumulation in the glands of callow workers that were reared in isolation remains lower compared to mature nestmates. Early social isolation also affects the acquisition of the specific colony profile which remains very different from that of their mother colony. These results suggest a transfer of hydrocarbons from matures to callows. This transfer allows the new members of the colony to integrate the colonial odour during the few days following emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号