首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new subtilisin-like proteinase hydrolyzing chromogenic peptide substrate Glp-Ala-Ala-Leu-p-nitroanilide optimally at pH 8.1 was found in common plantain leaves. The protease named plantagolisin was isolated by ammonium sulfate precipitation of the leaves' extract followed by affinity chromatography on bacitracin-Sepharose and ion-exchange chromatography on Mono Q in FPLC regime. Its molecular mass is 19000 Da and pI 5.0. pH-stability range is 7-10 in the presence of 2 mM Ca(2+), temperature optimum is 40 degrees C. The substrate specificity of subtilase towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases: proteinase from leaves of the sunflower and taraxalisin. Besides, the proteinase is able to hydrolyze substrates with Pro in P(1) position. The enzyme hydrolyzes collagen. alpha and beta chains are hydrolyzed simultaneously in parallel; there are only low-molecular-mass hydrolysis products in the sample after 2 h of incubation. Pure serine proteinase was inactivated by specific serine proteinases inhibitors: diisopropylfluorophosphate, phenylmethylsulfonyl fluoride and Hg(2+). The plantagolisin N-terminal sequence ESNSEQETQTESGPGTAFL-, traced for 19 residues, revealed 37% homology with that of subtilisin from yeast Schizosaccharomyces pombe.  相似文献   

2.
Extracellular proteases secreted by the filamentous fungus Trichoderma harzianum have been identified. A proteinase active towards Z-Ala-Ala-Leu-pNa--the substrate of subtilisin-like proteases--dominated in the culture medium. This proteinase is synthesized de novo in response to addition of a protein substrate to the medium. Changing the carbohydrate in the culture medium changed the quantitative and qualitative spectrum of secreted enzymes. The most active extracellular proteinase of Trichoderma harzianum was purified 322-foldfrom the culture medium and obtained with a yield of 7.2%. The molecular mass of this proteinase is 73 kD and its pI is 5.35. The isolated enzyme has two distinct activity maxima, at pH 7.5 and 10.0, and is stable in the pH range 6.0-11.0. The temperature optimum for enzyme activity is 40 degrees C at pH 8. 0. The proteinase is stable up to 45-50 degrees C (depending on the substrate used). Calcium ions stabilized the enzyme at 55-60 degrees C. According to data on the study of functional groups of the active center and substrate specificity, the enzyme isolated from the culture medium of Trichoderma harzianum is a subtilisin-like serine proteinase.  相似文献   

3.
A serine proteinase was isolated from fruits of Maclura pomifera (Raf.) Schneid. by affinity chromatography on bacitracin-containing sorbents and gel-filtration. The enzyme, named macluralisin, is a glycoprotein with a molecular mass of 65 kDa; its protein moiety corresponds to a molecular mass of 50 kDa. The substrate specificity of macluralisin towards synthetic peptides and insulin B-chain is similar to that of cucumisin, a subtilisin-like proteinase from melon fruit. The enzyme is completely inhibited by diisopropylfluorophosphate. Its amino-acid composition resembles that of a serine proteinase isolated from the Cucurbitaceae. The N-terminal sequence has 33% of its residues identical to those of the sequence of fungal subtilisin-like proteinase K. Hence, Maclura pomifera serine proteinase belongs to the subtilisin family, which seems to be broadly distributed in the plant kingdom.Abbreviations DFP diisopropylfluorophosphate - PMSF phenylmethylsulfonylfluoride - Glp pyroglutamyl - NHC6H4NO2 p-nitroanilide This work was supported in part by a grant from the Russian Foundation for Basic Research.  相似文献   

4.
The cultural filtrates of S. thermovulgaris contain a proteinase which is active towards the chromogenic subtilisin substrate, Z-Ala-Ala-Leu-pNa, and azocasein. Pure enzyme preparations were obtained by affinity chromatography on bacitracin-Sepharose with subsequent rechromatography on the same adsorbent. The proteinase was completely inactivated by PMSF and DFP, the specific inhibitors for serine proteinase, by thiol reagents (HgCl2, PCMB) and by the protein inhibitor from S. jantinus. The pH activity optimum for the enzyme is 7.8-8.2, temperature optimum is 55 degrees C. The enzyme is stable at pH 6-9, has a pI of 5.0 and a molecular mass of 32 kDa. When tested against the peptide substrate, the enzyme shows a specificity characteristic for subtilisins. The N-terminal sequence of the enzyme, Tyr-Thr-Pro-Asn-Asp-Pro-Tyr-Phe-Ser-Ser-Arg-Gln-Tyr-Gly, shows a 100% homology with that of terminase, a thiol-dependent serine proteinase. On the basis of the above considerations the enzyme may be related to the subfamily of thiol-dependent serine proteinases.  相似文献   

5.
A halophilic bacterium was isolated from fish sauce, classified, and named Halobacillus sp. SR5-3. A purified 43-kDa proteinase produced by this bacterium showed optimal activity at 50 degrees C and pH 9-10 in 20% NaCl. The activity of the enzyme was enhanced about 2.5-fold by the addition of 20-35% NaCl, and the enzyme was highly stabilized by NaCl. It was found to be a serine proteinase related to either chymotrypsin or subtilisin. It absolutely preferred Ile at the P(2) position of substrates. Thus, the enzyme was found to be a halophilic serine proteinase with unique substrate specificity.  相似文献   

6.
A serine proteinase possessing a fibrinolytic activity was isolated from a culture filtrate of Streptomyces spheroides, strain 35. A consecutive use of affinity chromatography on bacillichin-silochrome and bacitracin-sepharose and ion-exchange chromatography on anionie PAP and cationic KMT resulted in a homogeneous proteinase with 1060-fold purification and 19% yield. The enzyme has a molecular weight of 28000; its amino acid composition is Asp31, Ser28, Thr29, Glu9, Pro14, Gly35, Ala42, Val26, Ile14, Leu13, Met2, Tyr9, Phe4, Trp3, His6, Lys4, Arg10. The enzyme has a pI at pH greater than 10 and the activity optimum against Z-L-Ala-L-Ala-L-Leu-pNA at pH 10-11. The enzyme is stable within the pH range of 4-11 and in 6 M guanidinium chloride pH 8.0 in the presence of Ca2+. The enzyme is inhibited by diisopropylfluorophosphate and benzylsulfofluoride, specific inhibitors of serine proteinases as well as by potato proteinase inhibitor. The serine proteinase SSPB isolated from Str. spheroides, strain 35 can be related to subtilisin-like serine proteinase, especially to those of SGPD and SGPE of Str. griseus.  相似文献   

7.
Proteinase secreted in the environment by bacilli on different growth stages was isolated by ion chromatography from the culture medium of Bacillus pumilus KMM 62. According to the hydrolysis character of specific chromogenic substrates and inhibition type, the enzyme belongs to subtilisin-like serine proteinases. The isolated proteinase with the molecular mass of 30 kDa displays maximum activity on hydrolysis of the peptide substrate Z-Ala-Ala-Leu-pNA at pH 8.0–8.5 and temperature 30°C. The protein is stable in the range of pH 7.5–10.0. It was shown that subtilisin-like serine proteinase from B. pumilus KMM 62 possessed thrombolytic activity.  相似文献   

8.
An extracellular thiol-dependent serine proteinase was isolated from culture medium filtrate of the microscopic fungus Paecilomyces lilacinus with a yield of 33%. The enzyme is inactivated by specific inhibitors of serine proteinases, phenylmethylsulfonyl fluoride, as well as by chloromercuribenzoate and mercury acetate, but is resistant to chelating agents. The proteinase has broad specificity, hydrolyzes proteins and p-nitroanilides of N-acylated tripeptides, exhibiting maximal activity in hydrolysis of substrates containing long hydrophobic and aromatic residues (norleucine, leucine, phenylalanine) as well as arginine at the P1 position. The enzyme has a molecular weight of 33 kD. The enzyme is most active at pH 10.0-11.5; it is thermostable and is characterized by broad optimum temperature range (30-60 degrees C), displaying about 25% of maximal activity at 0 degrees C. The N-terminal sequence of the enzyme (Gly-Ala-Thr-Thr-Gln-Gly-Ala-Thr-Gly/Ile-Xxx-Gly) has no distinct homology with known primary structures of serine proteinases from fungi and bacilli. Based on its physicochemical and enzymatic properties, the serine proteinase from P. lilacinus can be classified as a thiol-dependent subtilisin-like enzyme.  相似文献   

9.
A gram-positive thermotolerant bacterium, designated strain RKK-04, was isolated from a fermented Thai fish sauce broth as it demonstrated high proteolytic activity. A phylogenetic analysis based on comparisons of 16S rRNA gene sequences showed that strain RKK-04 is Bacillus licheniformis. The proteolytic enzyme, which was purified 80-fold with 18% yield, has a molecular mass of 31 kDa and an isoelectric point higher than 9.3. The optimum pH and temperature of the enzyme activity were found to be 10.0 and 50°C, respectively. The addition of diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride completely inhibited enzymatic activity. These results showed that the enzyme is a subtilisin-like alkaline serine proteinase. On the other hand, the enzyme exhibited unique cleavage sites in oxidized insulin B-chain that differed from those of other subtilisin-like proteases. High enzymatic activity was also retained under high salt conditions (30% NaCl). The myosin heavy chain of fish protein was completely digested by reaction with this enzyme. Thus the halotolerant proteinase from B. licheniformis RKK-04 is a key enzyme for fish sauce fermentation.  相似文献   

10.
A new alkaline elastase of an alkalophilic bacillus   总被引:3,自引:0,他引:3  
A new alkaline elastase was purified from the culture broth of an alkalophilic Bacillus sp. Ya-B. This was a serine proteinase. Molecular weight was 25,000. The optimum pH for elastin and casein was 11.75. The enzyme had very high specific activity, 12,400 units/mg protein for casein, and 2,440 units/mg protein for elastin at the optimum pH. It showed marked preference for elastin. The relative activity of elastin/casein of this enzyme was 17 and 6 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively. This enzyme also had higher keratin and collagen hydrolyzing activity in comparison with subtilisin.  相似文献   

11.
Circular dichroic spectroscopy has been used to study the effect of pH, guanidinium hydrochloride concentration and temperature on the conformation of the fungal subtilisin-like proteinase K and the bacterial DY. The ellipticity of the bands in the far ultraviolet region remains almost unchanged in the pH range 3.0-11.0 (PMS-proteinase K) and 5.0-10.0 (PMS-subtilisin DY). The same ranges of pH stability were determined from the pH dependence of the near ultraviolet dichroic spectra. Hence the changes in the tertiary and secondary structure occur in parallel. Proteinase K is considerably more stable at acidic and somewhat more stable at alkaline pH than subtilisin DY. At neutral pH proteinase K is more resistant to denaturation by guanidinium hydrochloride than is subtilisin DY. The midpoints of the denaturation curves were 6.2 M and 3.2 M guanidinium, respectively. The thermal unfolding of proteinase K occurred at a higher temperature than for subtilisin DY, the transition midpoints being 65 degrees and 48 degrees, respectively. Thus proteinase K is overall a much more robust molecule than subtilisin DY, showing greater resistance to all three forms of denaturation. The differences in the stability of the two proteinases can be partly explained by differences in their calcium binding sites.  相似文献   

12.
The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43 from Bacillus sp. KSM-KP43, with a C-terminal extension domain, was determined by the multiple isomorphous replacements method with anomalous scattering. The native form was refined to a crystallographic R factor of 0.134 (Rfree of 0.169) at 1.30-A resolution. KP-43 consists of two domains, a subtilisin-like alpha/beta domain and a C-terminal jelly roll beta-barrel domain. The topological architecture of the molecule is similar to that of kexin and furin, which belong to the subtilisin-like proprotein convertases, whereas the amino acid sequence and the binding orientation of the C-terminal beta-barrel domain both differ in each case. Since the C-terminal domains of subtilisin-like proprotein convertases are essential for folding themselves, the domain of KP-43 is also thought to play such a role. KP-43 is known to be an oxidation-resistant protease among the general subtilisin-like proteases. To investigate how KP-43 resists oxidizing reagents, the structure of oxidized KP-43 was also determined and refined to a crystallographic R factor of 0.142 (Rfree of 0.212) at 1.73-A resolution. The structure analysis revealed that Met-256, adjacent to catalytic Ser-255, was oxidized similarly to an equivalent residue in subtilisin BPN'. Although KP-43, as well as proteinase K and subtilisin Carlsberg, lose their hydrolyzing activity against synthetic peptides after oxidation treatment, all of them retain 70-80% activity against proteinaceous substrates. These results, as well as the beta-casein digestion pattern analysis, have indicated that the oxidation of the methionine adjacent to the catalytic serine is not a dominant modification but might alter the substrate specificities.  相似文献   

13.
The gene for a serine proteinase from a thermophilic Bacillus species was identified by PCR amplification, and the complete gene was cloned after identification and isolation of suitably sized restriction fragments from Southern blots by using the PCR product as a probe. Two additional, distinct PCR products, which were shown to have been derived from other serine proteinase genes present in the thermophilic Bacillus species, were also obtained. Sequence analysis showed an open reading frame of 1,206 bp, coding for a polypeptide of 401 amino acids. The polypeptide was determined to be an extracellular serine proteinase with a signal sequence and prosequence. The mature proteinase possessed homology to the subtilisin-like serine proteinases from a number of Bacillus species and had 61% homology to thermitase, a serine proteinase from Thermoactinomyces vulgaris. The gene was expressed in Escherichia coli in the expression vector pJLA602 and as a fusion with the alpha-peptide of the lacZ gene in the cloning vector pGEM5. A recombinant proteinase from the lacZ fusion plasmid was used to determine some characteristics of the enzyme, which showed a pH optimum of 8.5, a temperature optimum of 75 degrees C, and thermostabilities ranging from a half-life of 12.2 min at 90 degrees C to a half-life of 40.3 h at 75 degrees C. The enzyme was bound to a bacitracin column, and this method provided a simple, one-step method for producing the proteinase, purified to near homogeneity.  相似文献   

14.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

15.
A serine proteinase having an activity optimum at pH 6.7-8.2 has been isolated from amylorisine P-10x (a mixture of Aspergillus oryzae enzymes) by chromatography on DEAE-Sephadex A-50 and bacitracin Sepharose 4B. The proteinase is fully inactivated by phenylmethylsulfonylfluoride and diisopropylfluorophosphonate, the specific inhibitors of the enzyme, and has a pI at pH 7.5. The molecular mass of serine proteinase is 30000 Da; its amino acid composition appears as: Met2, Asp33, Thr18, Ser29, Glu21, Pro9, Glu32, Ala38, Val24, Ile16, Leu15, Tyr8, Phe8, His8, Lys18, Arg4, Trp6. The N-terminal sequence of the serine proteinase: Gly-Leu-Thr-Thr-Gln-Lys-Ser-Ala-Pro-Trp-Gly-Leu-Gly-Ser-Ile-Ser-Xaa-Lys- Gly-Gln-Gln-Ser-Thr-Asp-Tyr-Ile-Tyr, which coincides practically completely with the corresponding sequence of alkaline proteinase of A. oryzae, ATCC20386, has been determined. Similar to subtilisin, the enzyme catalyzes the condensation of leucine and alanine p-nitroanilides with N-benzyloxycarbonyl-alanyl-alanine and glycyl-alanine methyl esters.  相似文献   

16.
Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (>4MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of k(cat)(app)/K(M) probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the K(M) and k(cat)(app) are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of k(cat)(app), possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.  相似文献   

17.
Bacillus subtilis DC33 producing a novel fibrinolytic enzyme was isolated from Ba-bao Douchi, a traditional soybean-fermented food in China. The strong fibrin-specific enzyme subtilisin FS33 was purified to electrophoretic homogeneity using the combination of various chromatographic steps. The optimum temperature, pH value, and pI of subtilisin FS33 were 55°C, 8.0, and 8.7, respectively. The molecular weight was 30 kDa measured by SDS–PAGE under both reducing and non-reducing conditions. The enzyme showed a level of fibrinolytic activity that was about six times higher than that of subtilisin Carlsberg. The first 15 amino acid residues of N-terminal sequence of the enzyme were A-Q-S-V-P-Y-G-I-P-Q-I-K-A-P-A, which are different from that of other known fibrinolytic enzymes. The amidolytic activities of subtilisin FS33 were inhibited completely by 5 mM phenylmethanesulfonyl fluoride (PMSF) and 1 mM soybean trypsin inhibitor (SBTI), but 1,4-dithiothreitol (DTT), β-mercaptoethanol, and p-hydroxymercuribenzoate (PHMB) did not affect the enzyme activity; serine and tryptophan are thus essential in the active site of the enzyme. The highest affinity of subtilisin FS33 was towards N-Succ-Ala-Ala-Pro-Phe-pNA. Therefore, the enzyme was considered to be a subtilisin-like serine protease. The fibrinolytic enzyme had a high degrading activity for the Bβ-chains and Aα-chain of fibrin(ogen), and also acted on thrombotic and fibrinolytic factors of blood, such as plasminogen, urokinase, thrombin, and kallikrein. So subtilisin FS33 was able to degrade fibrin clots in two ways, i.e., (a) by forming active plasmin from plasminogen and (b) by direct fibrinolysis.  相似文献   

18.
The serine proteinase from B. licheniformis was purified by affinity chromatography on the sorbent obtained by attachment of p-(omega-aminomethyl)-phenylboronic acid via an amino group to CH-Sepharose. The use of this sorbent specific to the serine proteinases active sites resulted in a 35-fold purification of the enzyme with an apparent activity yield of 288%. Such a high activity yield is due to a removal of the enzyme inhibitors. The N-terminal sequence of B. licheniformis extracellular serine proteinase traced for 35 amino acid residues coincides with that of subtilisin Carlberg, a serine proteinase presumed to be secreted by a B. subtilis strain. Since the amino acid composition as well as the functional properties of these two enzymes did not reveal any noticeable differences, it was assumed that both proteinases are very similar, if not identical. This conclusion leads to reconsideration of the existing concept on an extremely fast rate of subtilisin evolution. Three multiple forms of B. licheniformis extracellular serine proteinase were found to differ only in their net charges, presumably as a result of partial deamidation of Asn or Gln residues within their structure.  相似文献   

19.
A novel fibrinolytic enzyme subtilisin FS33 was purified from Bacillus subtilis DC33, isolated from a traditional flavour-rich food in China. The purified subtilisin FS33 was a single chain protein with a molecular mass of 30 kDa measured by SDS-PAGE. After activated SDS-PAGE, the enzyme band exhibited strong fibrinolytic activity on the fibrin plate. Subtilisin FS33 was temperature-stable below 60°C over the pH range 5–12, with a maximum activity at pH 8.0, but the activity completely disappeared after 10 min above 65°C. The NH2-terminal amino acid sequence of the enzyme was different from that of other known fibrinolytic enzymes, such as NK, CK, SMCE, KA38, subtilisin E, subtilisin DFE and Katsuwokinase. The amidolytic activities of subtilisin FS33 were inhibited completely by phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI). EDTA did not affect the enzyme activity, and none of the ions tested activated the activity. Therefore, the enzyme was thought to be a subtilisin-like serine protease. The enzyme degraded the Bβ-chains of fibrin(ogen) very rapidly and then degraded the Aα-chain and at least five fragments from fibrin(ogen) were obtained after hydrolysis. Subtilisin FS33 was also able to cleave blood clots in the absence of endogenous fibrinolytic factors.  相似文献   

20.
1. The specificity of cathepsin G, a neutral proteinase from human spleen, was examined by use of low-molecular-weight substrates. The enzyme was found to hydrolyse several synthetic substrates also hydrolysed by chymotrypsin, but with different kinetic constants. 2. Maximal activity against benzoyl-DL-phenylalanine 2-naphthol ester and azo-casein was in the range pH 7.5-8.0. 3. The sensitivity of cathepsin G to the action of potential inhibitors was determined, and compared with those of bovine chymotrypsin and subtilisin. Cathepsin G showed the characteristics of a serine proteinase, but was less affected by the chloromethyl ketone of tosylphenylalanine than was chymotrypsin. 4. A rabbit anti-(human cathepsin G) serum was raised, and precipitin lines formed in agarose gel were stained for activity of the enzyme. 5. Cathepsin G was shown to be immunologically identical with the chymotrypsin-like enzyme of the azurophil granules of the neutrophil granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号