首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract: PEA-15 (phosphoprotein enriched in astrocytes, Mr = 15,000) is an acidic serine-phosphorylated protein highly expressed in the CNS, where it can play a protective role against cytokine-induced apoptosis. PEA-15 is a major substrate for protein kinase C. Endothelins, which are known to exert pleiotropic effects on astrocytes, were used to analyze further the processes involved in PEA-15 phosphorylation. Endothelin-1 or endothelin-3 (0.1 µ M ) induced a robust phosphorylation of PEA-15 that was abolished by the removal of extracellular calcium, but only diminished by inhibitors of protein kinase C. Microsequencing of phosphopeptides generated by digestion of PEA-15 following endothelin-1 treatment identified two phosphorylated residues: Ser104, previously recognized as the protein kinase C site, and a novel phosphoserine, Ser116, located in a consensus motif for either protein kinase casein kinase II or calcium/calmodulin-dependent protein kinase II (CaMKII). Partly purified PEA-15 was a substrate in vitro for CaMKII, but not for casein kinase II. Two-dimensional phosphopeptide mapping demonstrated that the site phosphorylated in vitro by CaMKII was also phosphorylated in intact astrocytes in response to endothelin. CaMKII phosphorylated selectively Ser116 and had no effect on Ser104, but in vitro phosphorylation by CaMKII appeared to facilitate further phosphorylation by protein kinase C. Treatment of intact astrocytes with okadaic acid enhanced the phosphorylation of the CaMKII site. These results demonstrate that PEA-15 is phosphorylated in astrocytes by CaMKII (or a related kinase) and by protein kinase C in response to endothelin.  相似文献   

2.
Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro‐dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin‐dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F‐actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared with similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared with hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin‐GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII‐GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared with hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus.  相似文献   

3.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   

4.
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in the biosynthesis of serotonin. TPH was once thought to be a single-gene product but it is now known to exist in two isoforms. TPH1 is found in the periphery and pineal gland whereas TPH2 is expressed specifically in the CNS. Both TPH isoforms are known to be regulated by protein kinase-dependent phosphorylation and the sites of modification of TPH1 by protein kinase A have been identified. While TPH2 is activated by calcium, calmodulin-dependent protein kinase II (CaMKII), the sites at which this isoform is modified are not known. Treatment of wild-type TPH2 with CaMKII followed by mass spectrometry analysis revealed that the enzyme was activated and phosphorylated at a single site, serine-19. Mutagenesis of serine-19 to alanine did not alter the catalytic function of TPH2 but this mutant enzyme was neither activated nor phosphorylated by CaMKII. A phosphopeptide bracketing phosphoserine-19 in TPH2 was used as an antigen to generate polyclonal antibodies against phosphoserine-19. The antibodies are highly specific for phosphoserine-19 in TPH2. The antibodies do not react with wild-type TPH2 or TPH1 and they do not recognize phophoserine-58 or phosphoserine-260 in TPH1. These results establish that activation of TPH2 by CaMKII is mediated by phosphorylation of serine-19 within the regulatory domain of the enzyme. Production of a specific antibody against the CaMKII phosphorylation site in TPH2 represents a valuable tool to advance the study of the mechanisms regulating the function of this important enzyme.  相似文献   

5.
The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.  相似文献   

6.
Abstract: In this study we demonstrate that Drosophila calcium/calmodulin-dependent protein kinase II (CaMKII) is capable of complex regulation by autophosphorylation of the three threonines within its regulatory domain. Specifically, we show that autophosphorylation of threonine-287 in Drosophila CaMKII is equivalent to phosphorylation of threonine-286 in rat α CaMKII both in its ability to confer calcium independence on the enzyme and in the mechanistic details of how it becomes phosphorylated. Autophosphorylation of this residue occurs only within the holoenzyme structure and requires calmodulin (CaM) to be bound to the substrate subunit. Phosphorylation of threonine-306 and threonine-307 in the CaM binding domain of the Drosophila kinase occurs only in the absence of CaM, and this phosphorylation is capable of inhibiting further CaM binding. Additionally, our findings suggest that phosphorylation of threonine-306 and threonine-307 does not mimic bound CaM to alleviate the requirement for CaM binding to the substrate subunit for intermolecular threonine-287 phosphorylation. These results demonstrate that the mechanism of regulatory autophosphorylation of this kinase predates the split between invertebrates and vertebrates.  相似文献   

7.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

8.
Ca2+/calmodulin-dependent protein kinase (CaMK)II is highly expressed in the CNS and mediates activity-dependent neuronal plasticity. Four CaMKII isoforms, alpha, beta, gamma and delta, have a large number of splicing variants. Here we identified isoforms of CaMKII in the rat substantia nigra (SN). Northern blot and RT-PCR analyses revealed that the gamma and delta isoform mRNAs with several splicing variants were predominantly expressed in SN. Immunoblot analysis indicated that the major isoforms were gammaA, gammaC, delta1 and delta3. An immunohistochemical study also confirmed the preferential localization of gamma and delta isoforms in SN dopaminergic neurons. In dopaminergic neurons, immunoreactivity against anti-CaMKIIdelta1-4 antibody was detected in both nucleus and cytoplasm, in contrast to the predominant expression of gamma isoforms in the cytoplasm. Furthermore, we showed expression of brain-derived neurotrophic factor (BDNF) mRNAs with exons II and IV in SN. Taken together with our previous observations, the results suggest that the CaMKIIdelta3 isoform is involved in the expression of BDNF in the SN.  相似文献   

9.
10.
Olfactory bulbectomized (OBX) mice showed significant impairment of learning and memory-related behaviors 14 days after olfactory bulbectomy, as measured by passive avoidance and Y-maze tasks. We here observed a large impairment of hippocampal long-term potentiation (LTP) in the OBX mice. Concomitant with decreased acetylcholinesterase expression, protein kinase C (PKC)alpha autophosphorylation and NR1(Ser-896) phosphorylation significantly decreased in the hippocampal CA1 region of OBX mice. Both PKCalpha and NR1(Ser-896) phosphorylation significantly increased following LTP in the control mice, whereas increases were not observed in OBX mice. Like PKC activities, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in the hippocampal CA1 region of OBX mice as compared with that of control mice. In addition, increased CaMKII autophosphorylation following LTP was not observed in OBX mice. Finally, the impairment of CaMKII autophosphorylation was closely associated with reduced pGluR1(Ser-831) phosphorylation, without change in synapsin I (site 3) phosphorylation in the hippocampal CA1 region of OBX mice. Taken together, in OBX mice NMDA receptor hypofunction, possibly through decreased PKCalpha activity, underlies decreased CaMKII activity in the post-synaptic regions, thereby impairing LTP induction in the hippocampal CA1 region. Both decreased PKC and CaMKII activities with concomitant LTP impairment account for the learning disability observed in OBX mice.  相似文献   

11.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

13.
Mitochondrial ATP synthase, a major ATP supplier in respiring cells, should be regulated in amount and in activity to respond to the varying demands of cells for ATP. We screened 80 protein kinase inhibitors and found that HeLa cells treated with four inhibitors exhibited reduced mitochondrial ATP synthesis activity. Consistently, knockdown of their target kinases (PKA, PKCδ, CaMKII and smMLCK) resulted in a decrease in mitochondrial ATP synthesis activity. Among them, mitochondria of smMLCK-knockdown cells contained only a small amount of ATP synthase, while the α- and β-subunits of ATP synthase were produced normally, suggesting that smMLCK affects assembly (or decay) of ATP synthase.  相似文献   

14.
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca2+-pumping.  相似文献   

15.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

16.
To determine the role of Pin1 in the neurotransmission pathway, Pin1-binding proteins in mouse brain extract were identified. The Pin1-binding proteins were extracted from mouse brain homogenate, and the trypsin-digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins that involve the neurotransmission pathway, such as synapsin I, synapsin II, and calcium/calmodulin-dependent protein kinase type II (CaMKII), were identified in a Mascot search. Pull-down and immunoprecipitation assay indicated that Pin1 binds CaMKII in a phosphorylation-specific manner. It was assumed that Pin1 participates in the neurotransmission pathway involving the phosphorylation signal by CaMKII.  相似文献   

17.
Protein kinase CK1 (formerly termed casein kinase I) is ubiquitous in eukaryotic cells and comprises a family of as many as 14 isoforms (including splice variants) in mammalian cells. Mammalian CK1delta and CK1epsilon, which are highly related to each other, are enriched at the centrosomes in interphase cells and at the spindle during mitosis. In the present study we have isolated, using the yeast two-hybrid system, a 182 amino acid residue fragment of the centrosomal and golgi N-kinase anchoring protein (CG-NAP, also known as AKAP450), which specifically interacts with CK1delta and CK1epsilon, but not with other CK1 isoforms. The 182 amino acid residue CG-NAP fragment, or full length CG-NAP, co-immunoprecipitates with CK1delta and CK1epsilon from mammalian cells. Consistent with this association, endogenous CG-NAP/AKAP450 and CK1delta co-localize in cells. Moreover, when expressed in the presence of CK1delta the 182 amino acid residue CG-NAP fragment adopts the same sub-cellular localization as CK1delta. Strikingly, attachment of the CG-NAP fragment to the plasma membrane is sufficient to re-localize a significant level of CK1delta to the membrane. These findings support a model in which sub-cellular localization of CK1delta/epsilon molecules at the centrosome is mediated, at least in part, through the action of CG-NAP/AKAP450 and provide a potential mechanism by which the contribution to cell cycle progression by CK1delta/epsilon may be regulated.  相似文献   

18.
We have shown that the splicing isoform of Dp71 (Dp71d) localizes to the nucleus of PC12 cells, an established cell line derived from a rat pheochromocytoma; however, the mechanisms governing its nuclear localization are unknown. As protein phosphorylation modulates the nuclear import of proteins, and as Dp71d presents several potential sites for phosphorylation, we analyzed whether Dp71d is phosphorylated in PC12 cells and the role of phosphorylation on its nuclear localization. We demonstrated that Dp71d is phosphorylated under basal conditions at serine and threonine residues by endogenous protein kinases. Dp71d phosphorylation was activated by 2-O-tetradecanoyl phorbol 13-acetate (TPA), but this effect was blocked by EGTA. Supporting the role of intracellular calcium on Dp71d phosphorylation, we observed that the stimulation of calcium influx by cell depolarization increased Dp71d phosphorylation, and that the calcium-calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7) blocked such induction. The blocking action of bisindolylmaleimide I (Bis I), a specific inhibitor for Ca2+/diacylglicerol-dependent protein kinase (PKC), on Dp71d phosphorylation suggested the participation of PKC in this event. In addition, transfection experiments with Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression vectors as well as the use of KN-62, a CaMKII-specific inhibitor, demonstrated that CaMKII is also involved in Dp71d phosphorylation. Stimulation of Dp71d phosphorylation by cell depolarization and/or the overexpression of CaMKII favored the Dp71d nuclear accumulation. Overall, our results indicate that CAMKII-mediated Dp71d phosphorylation modulates its nuclear localization.  相似文献   

19.
Aurora-C, a member of the Aurora kinase family, is implicated in the regulation of mitosis. In contrast to Aurora-A and Aurora-B its cellular localization and functions are poorly characterized. TACC1 protein belongs to the transforming acidic coiled-coil family shown to interact with the Aurora kinases. In the present study we analyzed the interaction between Aurora-C and TACC1 by means of immunofluorescence (IF), co-immunoprecipitation (IP) and in vitro phosphorylation experiments. We demonstrated that Aurora-C and TACC1 proteins co-localize to the midbody of HeLa cells during cytokinesis. Immunoprecipitated TACC1 from HeLa cell extracts was associated with Aurora-C. In addition, the interaction of the two proteins was tested by analyzing the phosphorylation of TACC1 in vitro. The results demonstrated that TACC1 is phosphorylated by Aurora-C on a serine at position 228. In conclusion, the study demonstrated that TACC1 localizes at the midbody during cytokinesis and interacts with and is a substrate of Aurora-C, which warrant further investigation in order to elucidate the functional significance of this interaction.  相似文献   

20.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号