首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of antinicotinic acetylcholine receptor (AcChR) antibodies in myasthenia gravis (MG) is modulated by specific Th (CD4+) lymphocytes that can recognize epitopes on the denatured AcChR alpha subunit. Thirty-two overlapping synthetic peptides corresponding to the complete sequence of human AcChR alpha subunit were used to investigate the anti-alpha subunit response of unselected lymphocytes and of CD8(+)-depleted, CD4(+)-enriched lymphocytes from the blood of nine MG patients and from four healthy controls. One subject was a newly diagnosed MG patient that was tested three times after the development of the disease. An anti-AcChR response of the CD4(+)-enriched cells was present that could be detected only after removal of the CD8+ population and that seems to be related to the clinical conditions of the patient. The high basal rate of the cell proliferation of the unselected unstimulated blood lymphocytes and the normal basal rate observed for the CD8(+)-depleted population suggested the presence of activated CD8+ cells. The study of surface markers of the T cells confirmed the existence of activated CD8+ and CD4+ cells in numbers correlated with the severity of the disease and the results of the in vitro response of the T cells. The anti-AcChR activity of the CD4+ cells in MG may be a useful marker of the activity of the disease and it seems to be influenced by activated CD8+ cells present in the patients' blood.  相似文献   

2.
Autoimmune T cell lines specific for muscle nicotinic acetylcholine receptor (AChR) were propagated from the blood of three myasthenia gravis patients by the use of a pool of synthetic peptides (delta-pool) corresponding to the complete sequence of the delta-subunit of human muscle AChR. Propagation of AChR-specific T cell lines was attempted unsuccessfully from four other myasthenia gravis patients and from four healthy controls. The lines had CD3+, CD4+, CD8- phenotype, strongly recognized the delta-pool, and cross-reacted vigorously with non-denatured AChR purified from mammalian muscle. They did not cross-react detectably with pools of similar overlapping synthetic peptides corresponding to the complete sequences of the alpha- and gamma-subunits of human muscle AChR. The sequence segments of the delta-subunit that contain T epitopes were identified by investigating the response of the three CD4+ T cell lines to the individual synthetic peptides forming the delta-pool. Each line had an individual pattern of peptide recognition. Although no immunodominant region, recognized in association with different DR haplotypes, could be identified, the sequence segments most strongly recognized by the CD4+ T cell lines were clustered within residues 121-290. One of the peptides more strongly recognized by the T cells corresponded to a sequence segment with high predicted propensity to form an amphipathic alpha-helix, a structural motif proposed to be typical of T epitopes.  相似文献   

3.
We have investigated Th cell recognition of the HIV core protein p24 by using CD4+ T cell clones derived from cynomolgus macaques immunized with hybrid HIV p24: Ty virus-like particles (VLP). T cell lines from two immunized animals responded to p24: Ty-VLP, control Ty-VLP, purified p24, and whole inactivated HIV, indicating the presence of T cells specific for p24 as well as the Ty carrier protein. The HIV determinants recognized by the T cell lines were identified by using a series of overlapping peptides synthesized according to the sequence of p24. Both T cell lines recognized peptide 11 (amino acids 235-249) and peptide 14 (amino acids 265-279). In addition, one T cell line also responded to peptide 9 (amino acids 215-229). Definitive identification of two T cell epitopes on p24 was confirmed at the clonal level: from a total of four T cell clones generated from one of the T cell lines, two respond specifically to peptide 11 and two to peptide 14. The T cell clones were CD4+ and MHC class II-restricted and secreted IL-2 in response to stimulation with purified p24, inactivated HIV or a single synthetic peptide. The specificity of the Th clones for variant peptides demonstrated cross-reactivity with two simian immunodeficiency virus isolates, but only limited responses to HIV-2 sequences. However, the Th cell epitopes identified on p24 are highly conserved between 12 HIV-1 isolates and were recognized by both of the immunized primates. These sequences may therefore be useful for priming a broadly reactive immune response to HIV-1.  相似文献   

4.
Susceptibility to experimental autoimmune myasthenia gravis (EAMG), which is induced in mice by injection of purified Torpedo nicotinic acetylcholine receptor (TAChR), is influenced by the I-A locus products, which restrict presentation of AChR Th epitopes. The bm12 mutation of the I-Ab molecule in the C57BL/6 strain, which is highly susceptible to EAMG, yields the EAMG resistant mutant B6.C-H-2bm12 (bm12). We investigated here the consequences of the bm 12 mutation on the CD4+ response to the TAChR alpha subunit. Upon immunization with TAChR, CD4+ cells became sensitized to TAChR and anti-AChR antibodies were produced in both bm12 and C57BL/6 strains. Overlapping synthetic peptides, corresponding to the complete sequence of TAChR alpha subunit, were used to identify Th epitopes. CD4+ cells from C57BL/6 mice recognized peptides T alpha 150-169, T alpha 181-200, and T alpha 360-378. CD4+ cells from bm12 mice did not respond to any synthetic sequence. Upon injection of the three C57BL/6 Th epitope peptides, either individually or as a pool, CD4+ cells from C57BL/6 mice recognized each peptide and TAChR. Therefore they recognized epitopes similar or identical to those originated from TAChR processing. CD4+ cells from bm12 mice injected with the same peptides responded to T alpha 360-378 strongly, to a lesser extent to T alpha 181-200, never to peptide T alpha 150-169. Only CD4+ cells sensitized against the T epitope peptide T alpha 181-200 responded to TAChR. We tested if lack of response to T alpha 150-169, and the low response to T alpha 181-200, was due to inability of the I-Abm12 molecule to present the T epitope peptides. bm12 and C57BL/6 APC were used to present the T epitope peptides to specifically sensitized CD4+ cells from C57BL/6 mice. All T epitope peptides were presented by bm12 APC, although T alpha 150-169 was presented less efficiently than by C57BL/6 APC. Resistance to EAMG induced by the bm12 mutation may be due to the change in the epitope repertoire of AChR-specific Th cells, and lack of recognition of otherwise immunodominant Th epitopes. For at least one epitope this might be due to absence of potentially reactive, specific CD4+ clones.  相似文献   

5.
Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.  相似文献   

6.
We previously demonstrated that cultures of rat uveitogenic T cells rapidly become dominated by CD4+ cells, but activation of CD8+ autoreactive T cells also occurred during the in vitro culture of in vivo-primed T cells. In the present study, we show that the commonly used uveitogenic peptide, interphotoreceptor retinoid-binding protein (IRBP) 1-20, generated both CD4+ and CD8+ autoreactive T cells in the C57BL/6 (B6) mouse and that this 20-mer contains at least two distinct antigenic epitopes. To determine whether the CD8 response was Ag-specific and whether CD4+ and CD8+ IRBP1-20-specific T cells recognize distinct antigenic epitopes, we prepared highly purified CD4+ and CD8+ T cells from IRBP1-20-primed mice and tested their proliferative response to a large panel of truncated peptides derived from IRBP1-20. The results showed that both CD4+ and CD8+ T cells recognized the same spectrum of peptides. In addition, peptides P10-18 were found to bind effectively to CD8+ IRBP1-20-specific T cells when complexed with recombinant H-2K(b) and also stimulate the proliferation and cytokine production of CD4+ IRBP1-20-specific T cells. Our results document for the first time that CD8+ and CD4+ autoreactive T cells display characteristic epitope recognition and they both recognize the same core epitope.  相似文献   

7.
Major surface protein 2 (MSP2) is an immunodominant outer membrane protein of Anaplasma marginale and Anaplasma phagocytophilum pathogens that cause bovine anaplasmosis and human granulocytic ehrlichiosis, respectively. MSP2 has a central hypervariable region (HVR) flanked by highly conserved amino and carboxyl termini. During A. marginale infection, dynamic and extensive amino acid sequence variation in MSP2 occurs through recombination of msp2 pseudogenes into the msp2 expression site, followed by sequential segmental gene conversions to generate additional variants. We hypothesized that MSP2 variation leads to significant changes in Th cell recognition of epitopes in the HVR. T cell epitopes were mapped using T cells from native MSP2-immunized cattle and overlapping peptides spanning the most abundant of five different MSP2 HVRs in the immunogen. Several epitopes elicited potent effector/memory Th cell proliferative and IFN-gamma responses, including those in three discreet blocks of sequence that undergo segmental gene conversion. Th cell clones specific for an epitope in the block 1 region of the predominant MSP2 variant type failed to respond to naturally occurring variants. However, some of these variants were recognized by oligoclonal T cell lines from MSP2 vaccinates, indicating that the variant sequences contain immunogenic CD4(+) T cell epitopes. In competition/antagonism assays, the nonstimulatory variants were not inhibitory for CD4(+) T cells specific for the agonist peptide. Dynamic amino acid sequence variation in MSP2 results in escape from recognition by some effector/memory MSP2-specific Th cells. Antigenic variation in MSP2 Th cell and B cell epitopes may contribute to immune evasion that allows long-term persistence of A. marginale in the mammalian reservoir.  相似文献   

8.
Autoreactive T cells responding to systemic autoantigens have been characterized in patients and mice with autoimmune diseases and in healthy individuals. Using peptides covering the whole sequence of histone H4, we characterized several epitopes recognized by lymph node Th cells from nonsystemic lupus erythematosus-prone mice immunized with the same peptides, the H4 protein, or nucleosomes. Multiple T epitopes were identified after immunizing H-2d BALB/c mice with H4 peptides. They spanned residues 28-42, 30-47, 66-83, 72-89, and 85-102. Within the region 85-102, a minimal CD4+ T epitope containing residues 88-99 was characterized. Although Abs to peptide 88-99 recognized H4, this peptide does not contain a dominant B cell epitope recognized by anti-H4 Abs raised in BALB/c mice or Abs from NZB/NZW H-2d/z lupus mice. Th cells primed in vivo with H4 responded to H4, but not to peptide 88-99. However, this peptide was able to stimulate the proliferation and IL-2 secretion of Th cells generated after immunization with nucleosomes. H488-99 thus represents a cryptic epitope with regard to H4 and a supradominant epitope presented by nucleosome, a supramolecular complex that plays a key role in lupus. This study shows that in the normal repertoire of naive BALB/c mice, autoreactive Th cells specific for histones are not deleted. The reactivity of these Th cells seems to be relatively restricted and resembles that of Th clones generated from SNF1 ((SWR x NZB)F1; I-Ad/q) lupus mice described earlier.  相似文献   

9.
By using a series of overlapping synthetic peptides that cover more than 95% of the amino acid sequence of nucleoprotein (NP) of influenza A/NT/60/68 virus, five Th cell epitopes in B10.S (H-2s), BALB/c (H-2d), CBA (H-2k), and B6 (H-2b) mice have been identified. The specificity of Th cell recognition of epitopes is largely dependent on the H-2 haplotype of the responding mouse strain. However, two out of the five Th epitopes defined could be recognized by mice of more than one haplotype, implying that the primary sequence of protein antigens could also influence the selection of dominant T cell epitopes by the immune system. Immunization of B10.S mice with peptide 260-283 generated strong Th cell response against type A influenza viruses. In the other three strains of mice tested, priming with helper peptides induced a stronger antipeptide than antiviral T cell response. However, the low responsiveness to virus in these mice could be partially overcome by immunization with a mixture of several helper peptides. The Th epitopes are defined by the ability of the peptides to stimulate class II MHC restricted CD4+ T cells to proliferate and to produce IL-2 in vitro. When compared with the known epitopes on NP recognised by class I restricted CD8+ cytotoxic T cells, it appears that Th and cytotoxic T cell epitopes are nonoverlapping. The AMPHI and Motifs methods were employed to analyze the sequence of NP and predict the potential dominant sites in the molecule. The predictions are compared with the experimental data obtained and the implications discussed.  相似文献   

10.
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.  相似文献   

11.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides.  相似文献   

12.
Yersinia heat-shock protein 60 (Ye-hsp60) has recently been found to be a dominant CD4 and CD8 T cell Ag in Yersinia-triggered reactive arthritis. The nature of this response with respect to the epitopes recognized and functional characteristics of the T cells is largely unknown. CD4+ T cell clones specific for Ye-hsp60 were raised from synovial fluid mononuclear cells from a patient with Yersinia-triggered reactive arthritis. and their specificity was determined using three recombinant Ye-hsp60 fragments, overlapping 18-mer synthetic peptides as well as truncated peptides. Functional characteristics were assessed by cytokine secretion analysis in culture supernatants after specific antigenic stimulation. Amino acid positions relevant for T cell activation were detected by single alanine substitutions within the epitopes. Fragment II comprising amino acid sequence 182-371 was recognized by the majority of clones. All these clones were specific for peptide 319-342. Th1 clones and IL-10-secreting clones occurred in parallel, sometimes with the same fine specificity. The 12-mer core epitope 322-333 is a degenerate MHC binder and is presented to some T cell clones in a "promiscuous" manner. This epitope is almost identical with a B27-restricted CTL epitope of Ye-hsp60. Cross-reactivity of Ye-hsp60-specific T cell clones with self-hsp60 was not observed. In conclusion, an interesting Ye-hsp60 T cell epitope has been identified and characterized. It remains to be determined whether this epitope is also relevant in other reactive arthritis patients.  相似文献   

13.
Xenotransplantation of porcine islets is considered a viable alternative treatment for type 1 diabetes mellitus. Therefore, we characterized human PBL responding to porcine islets both in vitro by coculture and in vivo using SCID mice reconstituted with human PBLs (HuPBL-SCID) and transplanted with porcine islets. T cell lines generated in vitro and graft-infiltrating T cells obtained from HuPBL-SCID mice were CD4+-proliferated specifically to porcine islets cultured with autologous APC. This proliferation was abrogated by an anti-human class II Ab. These T cell lines also proliferated to purified swine leukocyte Ag (SLA) class I molecules in the presence of self-APC, indicating that the primary xenoantigens recognized are peptides derived from SLA. This CD4+ T cell line lysed porcine islets but not splenocytes. CD4+ T cell clones with Th0, Th1, and Th2 cytokine profiles were isolated. The Th0 and Th1 clones lysed porcine islets, whereas the Th2 clone that secreted a large amount of IL-4 was not lytic. These results demonstrate that human T cells responding to porcine islets are primarily CD4+ and recognize porcine xenoantigens by the indirect Ag pathway presentation. These activated T cells produce cytokines that lyse islets. Furthermore, we demonstrate that the major porcine xenoantigens recognized are SLA class I molecules.  相似文献   

14.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

15.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

16.
HLA DR3 is an MHC molecule that reportedly predisposes humans to myasthenia gravis (MG). Though MG is an Ab-mediated autoimmune disease, CD4+ T cells are essential for the generation of high-affinity Abs; hence the specificities of autoreactive CD4+ T cells are important. In this study we report the HLA DR3-restricted T cell determinants on the extracellular region sequence of human acetylcholine receptor alpha subunit. We find two promiscuous determinants on this region 141-160 and 171-190 as defined by their immunogenicity in HLA DR3-, HLA DQ8-, and HLA DQ6-transgenic mice in the absence of endogenous mouse class II molecules. We also studied the minimal determinants of these two regions by truncation analysis, and the MHC binding affinity of a set of overlapping peptides spanning the complete sequence region of human acetylcholine receptor alpha subunit. One of the peptide sequences strongly immunogenic in HLA DR3-transgenic mice also had the highest binding affinity to HLA DR3. Identification of T cell determinants restricted to an MHC molecule known to predispose to MG may be an important step toward the development of peptide-based immunomodulation strategies for this autoimmune disease.  相似文献   

17.
A synthetic peptide approach has been used to identify the epitopes recognized by clonal and polyclonal human T cells reactive to the recombinant mycobacterial 65-kDa protein Ag. Three of the four epitopes identified were recognized as cross-reactive between Mycobacterium tuberculosis and Mycobacterium leprae, although their amino acid sequence in two of three cases was not identical. The peptide (231-245) defining an epitope recognized as specific to the M. tuberculosis complex contains two substitutions compared with the homologous M. leprae region of which one or both are critical to T cell recognition. The reactive T cell clones showed helper/inducer phenotype (CD4+, CD8-), and secrete IL-2, granulocyte-macrophage-CSF, and IFN-gamma upon Ag stimulation. The same clones display cytotoxicity against macrophages pulsed with the relevant peptides or mycobacteria.  相似文献   

18.
19.
CD4(+) Th cells play an important role in the induction and maintenance of adequate CD8(+) T cell-mediated antitumor responses. Therefore, identification of MHC class II-restricted tumor antigenic epitopes is of major importance for the development of effective immunotherapies with synthetic peptides. CAMEL and NY-ESO-ORF2 are tumor Ags translated in an alternative open reading frame from the highly homologous LAGE-1 and NY-ESO-1 genes, respectively. In this study, we investigated whether CD4(+) T cell responses could be induced in vitro by autologous, mature dendritic cells pulsed with recombinant CAMEL protein. The data show efficient induction of CAMEL-specific CD4(+) T cells with mixed Th1/Th2 phenotype in two healthy donors. Isolation of CD4(+) T cell clones from the T cell cultures of both donors led to the identification of four naturally processed HLA-DR-binding CAMEL epitopes: CAMEL(1-20), CAMEL(14-33), CAMEL(46-65), and CAMEL(81-102). Two peptides (CAMEL(1-20) and CAMEL(14-33)) also contain previously identified HLA class I-binding CD8(+) T cell epitopes shared by CAMEL and NY-ESO-ORF2 and are therefore interesting tools to explore for immunotherapy. Furthermore, two CD4(+) T cell clones that recognized the CAMEL(14-33) peptide with similar affinities were shown to differ in recognition of tumor cells. These CD4(+) T cell clones recognized the same minimal epitope and expressed similar levels of adhesion, costimulatory, and inhibitory molecules. TCR analysis demonstrated that these clones expressed identical TCR beta-chains, but different complementarity-determining region 3 loops of the TCR alpha-chains. Introduction of the TCRs into proper recipient cells should reveal whether the different complementarity-determining region 3 alpha loops are important for tumor cell recognition.  相似文献   

20.
The primary human T cell response to HIV was analyzed by isolating from seronegative donors T cell clones specific for HIV gp120. T cell epitopes restricted by different MHC elements were identified within gp120, and synthetic peptides were used to address the fundamental problem of how HIV sequence variability affects T cell recognition. Even one conservative substitution can drastically reduce recognition; thus the interaction of gp120 epitopes with T cell receptors and MHC is precise and poorly crossreactive. Importantly, a subset of CD4+ gp120-specific clones manifest cytolytic activity and lyse uninfected autologous CD4+Ia+ T cells in the presence of gp120 in a process that is strictly dependent upon CD4-mediated uptake of gp120 by T cells. Assuming gp120 is shed from HIV-infected cells in vivo, this novel CD4-dependent autocytolytic mechanism may contribute to the profound depletion of CD4+ cells in AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号