首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymer-silver nanocomposites modified cotton fabrics were prepared by in situ chemical oxidative polymerization using pyrrole and silver nitrate. In a redox reaction between pyrrole and silver nitrate, silver ions oxidize the pyrrole monomer and get reduced. This reduced silver as nanoparticles deposited on/into the polypyrrole/cotton matrix layer and the interaction between silver and polypyrrole was by adsorption or electrostatic interaction. The structure and composite formation on cotton fiber was investigated using SEM, FT-IR, XPS and XRD. The results showed that a strong interaction existing between silver nanoparticles with polypyrrole/cotton matrix. FT-IR studies clearly indicated that the interaction between polypyrrole (NH) and cellulose (>COH) was by hydrogen bonding. It is observed that the conductivity of the composite coated fabrics has been increased by the incorporation of silver nanoparticles. In the synthesized composites, silver content plays an important role in the conductivity and antimicrobial activity rate of the fabrics against gram positive Staphylococcus aureus and gram negative Escherichia coli bacteria.  相似文献   

2.
Previously, we presented a novel approach for increasing Thermobifida fusca cutinase adsorption on cotton fibers by fusing cutinase with a carbohydrate-binding module (CBM). A preliminary study showed that two fusion proteins, namely cutinase-CBMCel6A and cutinase-CBMCenA, with similar stabilities and catalytic properties, had potential applications in bioscouring. In the present study, an indepth analysis of both cutinase-CBMs in bioscouring was explored. Effects of cutinase-CBMs on cotton bioscouring were investigated by characterizing the chemical and physical surface changes in enzyme-treated cotton fabrics. Gas chromatography/mass spectrometry was used to analyze the degradation of the cotton fabric cuticle; Fourier transform infrared microspectroscopy was used to study changes in the chemical composition of the cotton fabric epidermal layer; and scanning electron microscopy was used to monitor minor changes in the morphology of the fiber surface. Our results indicated that cutinase-CBMs in combination with pectinase had a greater effect on cotton fabric than did cutinase. Following scouring with cutinase-CBMs and pectinase, the performance of cotton fabric in terms of its wettability and dyeability was similar to that following alkali scouring. Our study provides a foundation for the further application of cutinase-CBM to bioscouring.  相似文献   

3.
Cellulases can penetrate into the fiber, causing tensile strength loss of the cellulosic fibers or fabrics. To minimize the tensile strength loss, we have immobilized cellulases on Eudragit S‐100. The characteristics of covalent Eudragit cellulase were evaluated using gel filtration analysis and UV spectra. Gel filtration analysis revealed that the cellulases were covalently bound to the polymer. Covalent Eudragit cellulase was loaded with the enzyme of about 40% and had a relative activity about 80% at a Eudragit S‐100 concentration of 15 g/L. When cellulase is bound to the polymer, the solubility profile becomes similar to the one of Eudragit. In addition, the effects of the enzyme on the cotton yarns and fabric using cellulases have been investigated. Native and immobilized cellulases caused improvements in whiteness and wrinkle recovery angle of the fabric in comparison to the control samples. The bending stiffness results show that native and immobilized cellulase treated cotton fabric has an improved softness than the control samples. It was found that using the immobilized cellulase reduced the weight and tensile strength, because the hydrolytic attack is only limited to the surfaces of cotton fibers.  相似文献   

4.
Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.  相似文献   

5.
Direct membrane separation using nonwoven fabric was applied to saline wastewater treatment by an activated sludge process. A nonwoven fabric module was immersed in an aeration tank. The part of treated was filtered through the module by suction and the rest of that was separated by a settlingtank. Various F/M ratios and salt concentrations were applied to investigate stable flux as well as pollutant removal. The pollutant removal efficiencies of nonwoven fabric separation was not affected by F/M ratios and salt concentrations and was higher than that of settling tank separation. The decline in flux was seemed to be caused by the biofilm on nonwoven fabricsurface  相似文献   

6.
Desizing of cotton and micropoly fabrics was done using thermostable xylanase from Bacillus pumilus ASH. Micropoly fabric showed better desizing than cotton under same conditions. Violet scale readings from the TEGEWA test after enzymatic desizing for 90 min at pH 7.0 and at 60°C showed the readings falling in the range of 4–5, indicating good desizing efficiency. During bioscouring the weight loss values and liberation of reducing sugars were highest when EDTA was used along with xylanase. The weight loss value of 1.5% was observed for dry cotton fabric after 1 h in case of agitated system at pH 7.0 and at an optimal enzyme dosage of 5 IU/g. The weight loss values and the liberation of reducing sugars were higher in case of cotton fabrics. Wetting time of fabrics was lowered significantly after 60 min of bioscouring using xylanase. Increase in temperature or concentration of surfactant led to further reduction in the wetting time. The whiteness values of fabrics after bioscouring were 0.9% higher than the chemically scoured fabrics indicating good efficacy of xylanase during the scouring process.  相似文献   

7.
《农业工程》2020,40(6):473-477
To enhance the efficiency of biological, chemical and physical properties like antibacterial activity, wash durability, air-permeability and biocompatibility of cotton fabric finished with chitosan and herbal nanocomposites. Extracts of Cassia angustifolia and Tamarindus indica with chitosan solution was bulk finished on 40s cotton fabrics. To increase the functional properties, chitosan and herbal extract nanocomposites were finished on to another set of fabrics (nanocomposite finishing). Different functional properties were carried out for both the sets of fabrics and comparatively analyzed. Antibacterial activity, physical properties and biocompatible properties of the finished fabric were determined. Antibacterial activity of nanocomposite finished fabrics showed inhibitory zones of 33 mm for E. coli and 31.6 mm for S. aureus. Nanocomposite finished fabrics showed good durable properties and physical properties than bulk finished fabrics. The study concludes that, nanocomposites could provide better functional properties than the bulk finished fabrics. The nano sized particles in the composites was considered significant for its functional applications in hospital based fabrics to prevent the transmission of nosocomial infections.  相似文献   

8.
棉纤维由棉胚珠表皮细胞分化生长而成,是研究细胞分化、细胞伸长等机理的良好材料。为了更好地研究它的分化和发育,人们建立了多种实验系统:离体胚珠培养系统、胚珠来源的单细胞悬浮培养系统、胚珠愈伤组织细胞来源的细胞悬浮培养系统,并对这些实验系统的特点对纤维细胞分化和生长,如培养基的配方、激素配比、pH值、抑制剂或促进剂的影响等进行了较为系统的研究。发现棉纤维的发育  相似文献   

9.
Native cotton fiber and in vitro cotton fiber that was induced from cotton ovule callus by suspension culture were observed using transmission electron microscope and scanning electron microscope. The ovule surface on the first day preanthesis was quite smooth. On the anthesis, it had a lot of protuberances. Two kinds of callus, smooth and rough were found. The microfibrils of callus was vertical to the cell long axis and they changed their orientations with the development of the in vitro cotton fiber: from the vertical to shallow spiral and then to parallel to the cell long axis. So was the native cotton fiber. It suggests that in vitro cotton fiber and native cotton fiber have similar development process. Compared with the ovule surface cell, most callus cells had smaller nuclear. During the development of the fiber, the plasm of native cotton fiber was denser than that of in vitro fiber, and it has more cellular organ than in vitro fiber. The cell wall of native cotton fiber was thicker and denser than that of the in vitro cotton fiber too. It suggests that the physiological activity of in vitro cotton fiber was less active than native cotton fiber.  相似文献   

10.
The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.  相似文献   

11.

1. 1. The purpose of this study was to determine the effect of fiber type and fabric moisture content on SC hydration.

2. 2. Using three similarly constructed fabrics, six fabric type/moisture content combinations were selected.

3. 3. Fabric swatches were placed on both “normal” and “hydrated” volar forearm skin of five subjects for a specified period, then removed.

4. 4. Two minutes after removal, evaporative water loss (EWL) and skin temperature were measured.

5. 5. Data were analyzed using analyses of variance and Bonferroni t-tests.

6. 6. For normal skin, SC hydration generally increased as fabric moisture content increased. SC was significantly drier after being in contact with cotton swatches at regain than at the two moisture content levels above regain, and also under polyester swatches.

7. 7. For hydrated skin, hydration state was significantly lower under the cotton swatch at regain than at 38.6% moisture content or at saturation, but was not significantly different under the polyester swatch at regain or at saturation.

Author Keywords: Textiles; stiffness; hydration; health; comfort  相似文献   


12.
Cotton is the world’s leading cash crop, and genetic improvement of fiber yield and quality is the primary objective of cotton breeding program. In this study, we used various approaches to identify QTLs related to fiber yield and quality. Firstly, we constructed a four-way cross (4WC) mapping population with four base core cultivars, Stoneville 2B, Foster 6, Deltapine 15 and Zhongmiansuo No.7 (CRI 7), as parents in Chinese cotton breeding history and identified 83 QTLs for 11 agronomic and fiber quality traits. Secondly, association mapping of agronomical and fiber quality traits was based on 121 simple sequence repeat (SSR) markers using a general linear model (GLM). For this, 81 Gossypium hirsutum L. accessions including the four core parents and their derived cultivars were grown in seven diverse environments. Using these approaches, we successfully identified 180 QTLs significantly associated with agronomic and fiber quality traits. Among them were 66 QTLs that were identified via linkage disequilibrium (LD) and 4WC family-based linkage (FBL) mapping and by previously published family-based linkage (FBL) mapping in modern Chinese cotton cultivars. Twenty eight and 44 consistent QTLs were identified by 4WC and LD mapping, and by FBL and LD mapping methods, respectively. Furthermore, transmission and variation of QTL-alleles mapped by LD association in the three breeding periods revealed that some could be detected in almost all Chinese cotton cultivars, suggesting their stable transmission and some identified only in the four base cultivars and not in the modern cultivars, suggesting they were missed in conventional breeding. These results will be useful to conduct genomics-assisted breeding effectively using these existing and novel QTL alleles to improve yield and fiber qualities in cotton.  相似文献   

13.
In this work, palm and coir fiber reinforced polypropylene bio-composites were manufactured using a single extruder and injection molding machine. Raw palm and coir were chemically treated with benzene diazonium salt to increase their compatibility with the polypropylene matrix. Both raw and treated palm and coir fiber at five level of fiber loading (15, 20, 25, 30 and 35 wt.%) was utilized during composite manufacturing. Microstructural analysis and mechanical tests were conducted. Comparison has been made between the properties of the palm and coir fiber composites. Treated fiber reinforced specimens yielded better mechanical properties compared to the raw composites, while coir fiber composites had better mechanical properties than palm fiber ones. Based on fiber loading, 30% fiber reinforced composites had the optimum set of mechanical properties.  相似文献   

14.
无土地毯式草皮的研究   总被引:16,自引:0,他引:16  
利用无纺织物作培养基,采用先进的无土培植技术培植地毯式草皮。试验结果表明:在培养基质的垫底处理中,以水泥板作垫底草毯生长最好。无纺织物地毯式草皮生长周期为20-25天,盖度80-95%,每m^2草皮的叶面积7.8-9.0m^2,地上部分鲜重为0.7-0.8kg/m^2,草毯运动重量为3.46kg/m^2。草毯铺地后不经过恢复期,直接进入生长,10天后即可投入使用。  相似文献   

15.
Enzymatic processes are emerging as important green biotechnological processes in textile industry. The application of recombinant pectin methylesterase (CtPME) and pectate lyase (CtPL1B) from Clostridium thermocellum for enzymatic degumming of jute or bioscouring of cotton was evaluated. The effectiveness of processes by combination of two enzymes were evaluated that effective degumming of jute and bioscouring of cotton as compared with individual enzyme. The optimum concentrations of two enzymes mixture for both processes, degumming of jute and bio scouring of cotton were 5 mg/mL (2.1 U/mL) of CtPME and 5 mg/mL (3.0 U/mL) of CtPL1B under optimized conditions of 60 min, 100 rpm and 50 °C. FESEM images showed more effective removal of pectin from jute fiber and cotton fabric by enzyme mixture, nevertheless similar to NaOH treatment. Wettability analysis showed mixture of enzymes and NaOH treated cotton fabric absorbed a water drop in 10 s and 8 s, respectively. UTM analysis showed higher tensile strength and Young’s modulus for jute fiber and cotton fabric treated with enzyme mixture than untreated and were similar to those of NaOH treated. These results showed that the CtPME and CtPL1B mixture can be used for replacing the chemical process by green bioprocess in textile industry.  相似文献   

16.
In the last few years, an increasing number of biotechnological techniques have been applied to the restoration and conservation of works of art, paintings, old maps, and papers or books. Enzymes can solve problems that give restorers difficulties, although for many applications it is not possible to use soluble enzymes; therefore, it is necessary to look for suitable carriers for immobilization. Different methods for covalent immobilization of enzymes to polyamide nonwovens were tested, using thermolysin as an example. Two distinct strategies were pursued: (1). controlled, partial hydrolysis of the polymer and subsequent binding of the enzyme to the released amino and carboxy groups; and (2). attachment of reactive groups directly to the polyamide without disintegrating the polymeric structure (O-alkylation). Different spacers were used for covalent fixation of the enzyme in both cases. The enzyme was fixed to the released amino groups by glutaraldehyde, either with or without a spacer. Either way, active enzyme could be immobilized to the matrix. However, intense treatment caused severe damage to the stability of the nonwoven fabric, and reduced the mechanical strength. Conditions were investigated to conserve the nonwoven fabric structure while obtaining near-maximum immobilized enzyme activity. Immobilization of the enzyme to the released carboxy group after acid hydrolysis was performed using dicyclohexylcarbodiimide. In comparison to the enzyme bound via the amino group, the yield of immobilized enzyme activity was slightly lower when benzidine was taken as spacer and still lower with a 1,6-hexanediamine spacer. O-alkylation performed with dimethylsulfate caused severe damage to the nonwoven fabric structure. Considerably better results were obtained with triethyloxonium tetrafluoroborate. As the spacers 1,6-hexanediamine and adipic acid dihydrazide were used, activation for immobilizing thermolysin was performed with glutaraldehyde, adipimidate, and azide. With the exception of azide, all combinations of spacers and activation reagents gave high yields of immobilized enzyme activity. Thermolysin immobilized by this technique showed a remarkably improved stability with respect to elevated temperature, extreme pH values, and reduced polarity. The nonwoven fabric can be stored for weeks without loss of enzyme activity by washing with distilled water and drying.  相似文献   

17.
Wang RH  Hu ZG  Liu Y  Lu H  Fei B  Szeto YS  Chan WL  Tao XM  Xin JH 《Biomacromolecules》2006,7(10):2719-2721
A novel chitosan fiber core/gold shell structural organic-inorganic composite was presented via a facile and eco-friendly approach. The chitosan fiber and gold/chitosan composites were characterized with the assistance of scanning electron microscopy and transmission electron microscopy observations. The chitosan fibers used in this study were 50 nm to 5 microm in diameter and up to hundreds of micrometers in length. The gold shells were typically 20-50 nm in depth, and their lattice fringes obliquely intersecting at an angle of 60 degrees were displayed. The formation mechanism of the as-fabricated chitosan fiber core with gold as the shell structural composites was also schematically discussed.  相似文献   

18.

1. 1. A new type of simulator for clothing microclimate was designed and constructed.

2. 2. The simulator was designed to simulate the humidity fluctuation of clothing microclimate as observed under light working conditions and to measure the surface temperature of sample fabrics against the skin by means of a radiation thermometer.

3. 3. Knitted fabrics of cotton and polyester, and polyethylene films were used as specimens with different hygroscopicities.

4. 4. The quick rise and fall in the surface temperature of cotton fabric was observed under rapid fluctuations of the microclimate humidity.

5. 5. Under the same humidity fluctuations, the temperature of polyester fabric rose and fell more moderately than that of cotton fabrics, and the temperature of the polyethylene film did not change. When the rate of change in stimulus temperature is higher, the threshold temperature of warm sensation of the skin comes closer to a given adaption temperature.

6. 6. Therefore, the rapid and large changes in the fabric temperature against the skin, which were observed especially for hygroscopic cotton fabric, must affect the thermal comfort of clothing.

Author Keywords: Clothing microclimate; humidity changes; temperature change; simulator thermal sensation; cotton; polyester hygroscopic fiber  相似文献   


19.
Four different types of cotton-based fabrics, namely, loom-state cotton, cotton/polyester (50/50), cotton/polyester (35/65) and grey mercerized fabrics were bioscoured and bleached. The four substrates are given enzymatic treatment using cellulase enzyme to affect bio-polishing followed by crosslinking using N,N-dimethylol 4,5-dihydroxyethylene urea (DMDHEU) to affect easy care finishing. In another series of experiments the said bioscoured–bleached substrates were similarly crosslinked followed by bio-polishing. Technical properties of the treated fabric that were monitored include: nitrogen content, loss in fabric weight, tensile strength, elongation at break, tear strength, whiteness index, surface roughness and wrinkle recovery angle. Scanning electron micrograph was also examined. Conclusions arrived at from these studies indicated that: post-crosslinking and pre-crosslinking revealed marginal differences in N%, wrinkle recovery angle and whiteness index, a point which validates the argument that cellulase enzyme could not break down the DMDHEU crosslinks within the molecular structure of cotton-containing fabrics. Meanwhile the surface roughness obtained with pre-crosslinking is a bit higher than those of post-crosslinking. Moreover, post-crosslinking caused higher losses in strength properties than pre-crosslinking. Scanning electron micrograph shows that cotton sample pre-crosslinked is almost smooth than those post-crosslinked.  相似文献   

20.
Aims: To test the efficacy of four wipe cloth types (cotton bar towel, nonwoven, microfibre and blended cellulose/cotton) with either quaternary ammonia cleaning solution or silver dihydrogen citrate (SDC) in cleaning food contact surfaces. Methods: Swab samples collected from untreated, cloth‐treated and cloth disinfectant‐treated surfaces were subjected to hygiene monitoring using adenosine triphosphate (ATP) bioluminescence and aerobic total plate counting (TPC) assays. Results: Adenosine triphosphate measurements taken after wiping the surfaces showed poor cleaning by nonwoven cloths (2·89 RLU 100 cm?2) than the microfibre (2·30 RLU 100 cm?2), cotton terry bar (2·26 RLU 100 cm?2) and blended cellulose/cotton cloth types (2·20 RLU 100 cm?2). The cellulose/cotton cloth showed highest log reduction in ATP‐B RLU values (95%) and CFU values (98·03%) when used in combination with SDC disinfectant. Conclusions: Cleaning effect of wiping cloths on food contact surfaces can be enhanced by dipping them in SDC disinfectant. ATP‐B measurements can be used for real‐time hygiene monitoring in public sector, and testing microbial contamination provides more reliable measure of cleanliness. Significance and Impact of the Study: Contaminated food contact surfaces need regular hygiene monitoring. This study could help to estimate and establish contamination thresholds for surfaces at public sector facilities and to base the effectiveness of cleaning methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号